

Deliverable Reference : D4.2

Title : Advanced CDFF Architecture and ICD

Confidentiality Level : PU

Lead Partner : SPACEAPPS

Abstract : This Deliverable presents the Architecture Design
of the Common Data Fusion Framework (OG3) and
a description of the relevant interfaces (ICD) with
other OGs

EC Grant N° : 730014

Project Officer EC : Christos Ampatzis (REA)

InFuse is co-funded by the Horizon 2020

Framework programme of the European Union

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 2

D4.2: Advanced CDFF Architecture and ICD

DOCUMENT APPROVAL SHEET

 Name Organization Date

Prepared by: Raul Dominguez

Shashank Govindaraj

Simon Lacroix

DFKI

SPACEAPPS

CNRS-LAAS

08/05/2017

Updated by: Raul Dominguez

Shashank Govindaraj

Simon Lacroix

Raul Dominguez

DFKI

SPACEAPPS

CNRS-LAAS

DFKI

10/05/2017

13/09/2017

Cross-reviewed by: Shashank Govindaraj

Jeremi Gancet

SPACEAPPS 12/05/2017

15/09/2017

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 3

D4.2: Advanced CDFF Architecture and ICD

Using InFuse Preliminary Design deliverables in Perspective of the H2020

Space Robotics Technologies SRC Call 2

Overview of the Preliminary Design WP deliverables’ content and purpose/logics

within InFuse

D4.1: The goal of D4.1 is to present the choices of the data processing and data fusion functions that

will be developed within InFuse.

After an analysis of operational scenarios which exhibit the required InFuse outputs, the list of these

outputs (“data products”) is defined. For each data product, a brief analysis of possible solutions is

made, and a solution is selected. Each solution is defined by a “Data Fusion Process Compound”

(DFPC), and is described with a coarse level of precision. The refinement of the DFPCs into a series of

elementary “Data Fusion Nodes” (DFNs, i.e. elementary data processing functions), and the definition

of the organisation of the DFNs to compose a DFPC is matter for further work for the InFuse project.

The DFPCs are defined for both the planetary and orbital reference implementations. While both

implementations mostly require different DFPCs, many DFNs will be shared between the two targeted

contexts.

The document also presents a sets of operational scenarios for each reference implementation. They

have the purpose of putting in context the proposed DFPCs.

D4.2 (this deliverable): This deliverable focuses on the one hand on software architecture

considerations, with the preliminary specification of all the key components that the InFuse CDFF

consists of, and on the other hand on the identification of all relevant interfaces, both internal to InFuse

and the external ones with respect to other OGs (OG2-ERGO and OG4-I3DS) in particular.

Note that the architecture and ICD material introduced in this document are essentially application

independent – application specific considerations will be introduced at a later stage, during the detailed

design of the InFuse CDFF (each of the orbital track and plenatery track will then be tailored,

accordingly).

This deliverable will serve as a starting point for the detailed design work, in the following work package.

D4.3: The purpose of this document is to define the strategy and overall approach for the testing

activities to be carried out internally (OG3), so that to ensure that the developed software is sound while

meeting the requirements expressed in the earlier phases of the project. The content is orbital /

planetary independent: it is not in the scope of this deliverable to specify the testing approach with

facilities and EGSEs specific to either the orbital or planetary scenarios. These aspects will instead be

addressed in the detailed design activities that are just starting as this document is being written, and

will be released by the CDR milestone.

Relation between WP4 deliverable’s content and other "common building block" OGs

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 4

D4.2: Advanced CDFF Architecture and ICD

The scope of OG3-InFuse lies essentially between OG4-I3DS, that produces raw sensor data, and

OG2-ERGO, which controls all the rover activities. The interfaces with these two OGs are defined in

the deliverable D4.2:

 The interfaces with OG4-I3DS are defined by sensor data types

 The interfaces with OG2-ERGO are defined on the one hand by the types of data products

(mainly terrain maps and localization information related to the rover and the terrain, and to the

chaser and target satellites), and on the other hand by requests made by OG2-ERGO to OG-

InFuse.

OG2-ERGO is interfaced with OG3-InFuse at the granularity of the DFPCs: OG2-ERGO has no view of

the inner mechanisms of OG3-InFuse that assembles DFNs into a DFPC. An OG2-ERGO request

triggers the activation of a DFPC (which can either be synchronous or not), along with given parameters,

and the DFPC returns the requested data products with an execution report. Within a DFPC, the DFNs

are assembled, sequenced and triggered via pre-defined scripts, which are configured according to the

parameters associated to the OG2-ERGO requests.

The definition of the DFPCs provided in D4.1 is generic, and makes no hypothesis regarding the

integration middleware within which they will be developed. The way the developed functions will be

integrated within the OG1-ESROCOS framework (and potentially other target middlewares) is depicted

in the document D4.2.

Finally the content of D4.3 is largely centered on InFuse internal testing and validation activities – in

that context, “integrated test plans” deal with the joint testing of several sub-parts of the InFuse

framework, not InFuse and other OGs. Still, several components of the InFuse CDFF have interfaces

with other OGs – mainly OG2-ERGO and OG4-I3DS. For these ones, it is foreseen in the test plan to

develop specific components as placeholders of ERGO and I3DS, exposing the interfaces that are

assumed to be the ones with which InFuse should integrate in the upcoming Space Robotics SRC

projects. We call them M-OG2 and M-OG4 (M standing for Mock). Their purpose again is only to make

it possible, internally, to carry out end-to-end tests and ensuring the soundness of the CDFF interfaces.

Applicability to the H2020 Space Robotics Technologies SRC upcoming calls (i.e.

OG7 to OG11a/b).

Environment perception, be it to model the environment or to localize the controlled robotic platform

within this environment, is at the core of autonomous operations, and is therefore required in all the

applications defined by the upcoming calls.

For each of the future Operational Grants, a set of relevant DFPCs identified in D4.1 document is

identified below as having particular relevance (note however that this list is based on very preliminary,

and still limited knowledge of the content and scope of each upcoming OG).

OG7: (Orbital Support Services): Long/Mid/Close-range Tracking and Detection, 3D Target

reconstruction, Point Cloud based Localisation

OG8: (Modular Robotized Assembly): Mid/Close-range Tracking and Detection, Point Cloud based

Localisation

OG9: (Satellite Re-configuration): Mid/Close-range Tracking, Point Cloud based Localisation

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 5

D4.2: Advanced CDFF Architecture and ICD

OG10: (Advanced Autonomy): DEM Building + Soil Type Map, and all the rover localisation DFPCs:

Visual Odometry, Visual/LIDAR based SLAM, Scientific Area Localisation, Visual Map-based

Localisation, Absolute Localisation.

OG11a: (Advanced Mobility): DEM Building + Soil Type Map and Visual Odometry for extreme terrain

mobility, plus all the localisation DFPC for the coordination of multiple platforms.

OG11b: (Robotized Construction): The required DFPCs for this OG are certainly similar to some of

the ones required for the orbital OGs: Long/Mid/Close-range Tracking and Detection, 3D Target

reconstruction, Point Cloud based Localisation – though in planetary context. DEM building and rover

localization DFPCs remain relevant.

Deliverable D4.2 provides the latest baseline about the InFuse CDFF architecture and ICD. In

perspective of the next OGs, it is essential to understand the proposed architecture and mechanisms

to handle data, and the proposed approach to generate middleware specific reference implementations

from the vanilla (middleware independent) CDFF environment.

In perspective of the upcoming OGs, D4.3 has limited relevance as its purpose is essentially to define

the InFuse internal strategy to test the various components of the CDFF. It is therefore of little use for

what concerns the preparation of bids for the next call, and similarly would have limited relevance for

the future implementation of the next OGs.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 6

D4.2: Advanced CDFF Architecture and ICD

Table of Contents

1 Introduction ... 12

1.1 Purpose and scope .. 12

1.2 Document structure .. 12

1.3 Applicable documents .. 12

1.4 Reference documents .. 12

1.5 Acronyms ... 13

2 Architecture Design Rationale .. 14

2.1 CDFF objectives... 14

2.1.1 Data Products Management and Orchestration.. 14

2.1.2 RCOS Independence .. 14

2.2 Architecture Design Process .. 15

3 Proposed architecture .. 16

3.1 CDFF-Core ... 17

3.2 CDFF-Support .. 18

3.3 CDFF-Dev .. 18

4 Detailed description.. 20

4.1 CDFF-Core ... 20

4.1.1 Data Fusion Node Common Interface .. 20

4.1.1.1 Metadata Handling .. 22

4.1.2 Nodes to be included .. 23

4.1.2.1 Feature Detection Nodes .. 24

4.1.2.2 Recognition and Registration Nodes... 24

4.1.2.3 State Estimation Methods ... 24

4.1.2.4 Data Filtering and Outlier Removal Nodes 24

4.2 CDFF-Support .. 25

4.2.1 Data Fusion Processing Compound ... 26

4.2.1.1 Example of a data Fusion Processing Compound and the

Description File.. 26

4.2.2 Orchestrator .. 28

4.2.3 Data Products Management Tool ... 29

4.2.3.1 Motivations .. 29

4.2.3.2 DPM implementation ... 30

4.3 CDFF-Dev .. 30

4.3.1 CDFF-Dev Common Interface .. 30

4.3.2 Middleware Facilitator ... 31

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 7

D4.2: Advanced CDFF Architecture and ICD

4.3.3 Logs and Data Flow Management .. 33

4.3.3.1 Python Bindings for EnviRe .. 34

4.3.4 Data Analysis and Performance Tools .. 35

4.3.5 Visualization Tools .. 39

5 Interface Control Document .. 42

5.1 OG3 Product Definition .. 42

5.1.1 Identification of OG3 Interactions with other OGs... 42

5.1.2 Data Products Generated by OG3 .. 44

5.1.3 Planetary reference implementation ... 44

5.1.4 Orbital reference implementation .. 45

5.2 Internal Interfaces .. 46

5.2.1 Data Product Storage .. 46

5.2.2 Data Product Retrieval .. 46

5.2.3 Activation DFPCs .. 47

5.3 Interface with OG1 ... 48

5.3.1 I/F Requirements ... 49

5.4 Interface with OG2 ... 51

5.4.1 I/F Requirements ... 52

5.5 Interface with OG4 ... 55

5.5.1 Sensor Data Inputs from OG4 ... 56

5.5.2 Interfaces Requirements ... 66

5.6 Rover and Manipulation Interface .. 71

5.6.1 Sensor Data Inputs from OG6 ... 71

5.6.2 I/F Requirements ... 73

6 Conclusion .. 74

Appendix 1: Glossary ... 75

Appendix 2: InFuse CDFF Product Tree ... 77

Appendix 3: Libraries and Data Types .. 78

Appendix 4: Requirements Traceability Matrix .. 79

CDFF Core .. 79

User Requirements (UserR) .. 79

Functional Requirements (FuncR) ... 80

Performance Requirements (PerfR) .. 82

Interface Requirements (IntR) .. 83

Resource Requirements (ResR) .. 84

Operational Requirements (OpR) .. 84

Product assurance and safety requirements (ProdR).. 85

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 8

D4.2: Advanced CDFF Architecture and ICD

Configuration and implementation requirements (ConfR) ... 85

Test and Validation (ValR) ... 85

CDFF Dev ... 86

User Requirements (UserR) .. 86

Functional Requirements (FuncR) ... 87

Performance Requirements (PerfR) .. 88

Interface Requirements (IntR) .. 88

Resource Requirements (ResR) .. 88

Operational Requirements (OpR) .. 89

Product assurance and safety requirements (ProdR).. 89

Configuration and implementation requirements (ConfR) ... 89

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 9

D4.2: Advanced CDFF Architecture and ICD

List of Figures

Figure 1: InFuse approach towards the development and deployment of data fusion solutions. On the

developer’s environment a set of utilities for design and evaluation are available. The developed

perception solution is design to be easy to integrate in any target system, independently of the RCOS

and the specific hardware. .. 16

Figure 2: Currently Components performing a same task and using the same libraries might have

implemented at the RCOS dependent level many logic. .. 20

Figure 3: Proposed approach towards RCOS independent Data Fusion Processing Nodes: Component

logic should be moved to the library level and a common interface (DFNCI) will facilitate the integration

into different RCOSs. .. 21

Figure 4: Artifacts of a Data Fusion Node Common Interface (DFNCI). Information in the Interface

Description will ease the process of integration in the target RCOS as well as in orchestrated DFPCs.

 .. 22

Figure 5: Data Fusion Nodes can be set to listen at the Data Products generated by other Data Fusion

Nodes and associate to their output additional metadata. The Data Fusion Node that listens has

implemented decision logic on when a data product should be incorporated with metadata. The output

of the listener will contain the Data Product or a reference to it and relevant information about it (e.g.

spatiotemporal, source, processing steps gone through). .. 23

Figure 6: Data Fusion Nodes can be set to monitor parts of the Data Fusion Process in different ways.

In this case the Data Fusion Node 06 listens to three Data Product streams. 23

Figure 7: The diagram presents how the three components of the CDFF-Support interact and also the

interfacing with OG2 and OG4. The orchestrator (1) performs request to the Data Products Manager

based on what OG2 requires (2) sets the operational modes for the sensors and (3) activates or

deactivates DFPCs. The Data Product Manager (1) stores under request the data products generated

in the DFPCs and (2) retrieves under request data products for the Orchestrator or the DFPCs. 25

Figure 8: This figure describes an example of a DFPC, two data sources (laser and dynamixel) connect

with two DFNs. The data product that is generated is pointcloud and the input data types are 2D scan

samples and servo status (including motor position). ... 27

Figure 9: Internal software components of the Orchestrator and its interactions with other CDFF and

external software modules .. 29

Figure 10: An example of Python bindings generated for a DFN. A node that implements the DFNCI is

displayed on the left side. On the right side, the auto completion from the IPython REPL is used to

display the methods in Python. ... 31

Figure 11: Terminology: MW Component - Library(s) + mw wrapper (system level process); Task -

Threads running within the MW Component; DF-Lib - one or more DF algorithm implementations with

appropriate interfaces ... 31

Figure 12: The DFNCI template for a DFN will be generated from the node definition file. In addition,

we can generate templates for RCOS components and a Python wrapper. .. 32

Figure 13: Class diagram of a node that implements the DFNCI. A Python binding and a template for a

Rock component could be generated automatically. Red color indicates files that will be implemented

by the developer .. 33

Figure 14: Conversions from RCOS-specific log formats to an intermediate log format that is

independent of the RCOS have to be implemented. On the side of the DFNCI, conversions to the data

types of the library have to be implemented. .. 34

Figure 15: Sequence diagram that shows how a user could interact via REPL with the log player and

the data flow control. ... 34

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 10

D4.2: Advanced CDFF Architecture and ICD

Figure 16: Visualization of pySPACE node chains. pySPACE can distribute the execution of

independent node chains that will be compared over different processing units, e.g. CPUs. 35

Figure 17: pySPACE provides a large number of nodes for preprocessing, feature generation,

classification, visualization, etc. .. 36

Figure 18: pySPACE offers various metrics and visualization tools to compare different machine

learning and signal processing methods. .. 37

Figure 19: pySPACE will be used as a tool to evaluate signal processing and machine learning nodes

that will be deployed on the robot. .. 38

Figure 20: Class diagram that shows how a hypothetical algorithm MyAlgorithm can be integrated in

pySPACE as a pySPACE node. ... 39

Figure 21: The 2D representation of the Envire graph can be visualized using Envire Visualization. The

2D view presents all the transformation as well as the objects stored in each frame with their

correspondent type name. In this image a robot model is visualized. .. 40

Figure 22: The 3D representation of the Envire graph can be visualized using Envire Visualization. The

different transformations, frames as well as the objects contained them can be inspected. In this

visualization the visual components of a robot model are shown. .. 41

Figure 23: The figure above allows to identify the potential set of interactions between OG3 on the one

hand and OG2 and OG4 on the other hand. OG4 is understood as including a hardware part – i.e. the

physical sensors, and a software part consisting of the drivers and pre-processing capabilities included

in I3DS. .. 42

Figure 24: Summary of the interactions of OG3 with other OGs .. 43

Figure 25: The internal interfaces are (1) Data Product Retrieval and (2) Data Product Storage

implemented by the Data Product Manager and (3) Activation DFPCs implemented by the DFPCs .. 46

Figure 26: Workflow to integrate OG3 in OG1 ... 48

Figure 27: Communication workflow between OG2 and OG3. On the left diagram the main operational

loop is presented. On the right one, the operation to stop a request. ... 51

Figure 28: Communication workflow between OG3 and OG4 .. 55

Figure 29: Example of a DFPC. A DFPC receives sensor data as inputs (provided by OG4) and

produces Data Fusion Products (delivered to OG2 by the Orchestrator). .. 76

Figure 30: Product Tree of InFuse Common Data Fusion Framework ... 77

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 11

D4.2: Advanced CDFF Architecture and ICD

List of Tables

Table 1: List of features implemented in the CDFF. CDFF-Core and CDFF-Support incorporate all

features that are included both in the target system and in the developer’s environment. CDFF-Dev

includes features which are useful for the developer to design a data fusion processing solution as well

as to evaluate existing ones using logged data. None of the features of CDFF-Dev will be deployed in

the target system. .. 17

Table 2: Interface Data Product Storage implemented by the Data Products Manager 46

Table 3: Interface Data Product Retrieval implemented by the Data Products Manager 47

Table 4: Interface of the DFPCs for the Orchestrator ... 47

Table 5: Sensor data inputs from OG4 ... 64

Table 6 Metadata Data Types ... 65

Table 7 Data inputs from the Rover and Manipulation interface ... 72

Table 8: Tentative list of libraries and type definitions that will be used in InFuse 78

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 12

D4.2: Advanced CDFF Architecture and ICD

1 Introduction

1.1 Purpose and scope

This document aims to provide an advanced review of the architecture of the Common Data Fusion

Framework as well as the latest assumptions about the interfaces to inside and outside components.

At this stage of the design, a good level of refinement was introduced as to which specific data products

will be generated, how they will be handled, which core libraries will be integrated as well as how the

interactions with the other OGs will exactly be.

Note that is not in the scope of this document to detail the data fusion capabilities of InFuse, which are

rather covered by D4.1.

1.2 Document structure

In brief, the document is structured as follows:

Section 1: This introductory material.

Section 2: Architecture design rationales

Section 3: Proposed architecture

Section 4: Detailed description

Section 5: Interface Control Document

Section 6: Conclusion

1.3 Applicable documents

AD1 InFuse Grant Agreement (CO document)

AD2 InFuse Consortium Agreement (CO document)

1.4 Reference documents

RD1 D3.1: Technological review (PU document, available on demand)

RD2 D3.2: System Requirements and Operational Concept (PU document, available on demand)

RD3 D3.3 Architecture Design and ICD Early Iteration (PU document, available on demand)

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 13

D4.2: Advanced CDFF Architecture and ICD

1.5 Acronyms

API: Application Program Interface

CDFF: Common Data Fusion Framework

DEM: Digital Elevation Map

DPM: Data Product Management

DF: Data Fusion

DFM: Data Flow Management

DFN: Data Fusion Node

DFNCI: Data Fusion Node Common Interface

DFPC: Data Fusion Process Compound

GIS: Geographical Information System

ICU: Instruments Control Unit

IMU: Inertial Measurement Unit

LDFM: Logs and Data Flow Management

RCOS: Robotics Control Operating System (e.g. ROS, Rock, GenoM)

MW: Middleware. In this document is used as synonym for RCOS.

PCL: Point Cloud Library

REPL: Read Eval Print Loop

RI: Reference Implementation

SLAM: Simultaneous Localization and Mapping

TBD: To be defined

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 14

D4.2: Advanced CDFF Architecture and ICD

2 Architecture Design Rationale

2.1 CDFF objectives

The main objective of the CDFF is to provide a framework for the development, evaluation and

deployment of space robotics data fusion technologies in the context of the PERASPERA cluster of

project.

For the case of the relation between InFuse and ESROCOS this means that any data fusion process

developed using InFuse should be portable to ESROCOS with minimal efforts. This also means that

within InFuse it would be redundant to implement another RCOS or aim for taking decisions that are

within the realm of the RCOS (e.g. processes priorities). Similarly, InFuse does not take decisions on

the sequencing and control of its processes, as these pertain to the ERGO autonomy framework. Yet,

InFuse has mechanisms to select and parametrize its processes on the basis of requirements

expressed by ERGO. Finally regarding our relationship with the sensors system (OG4) InFuse does not

pursue to control the internal state of the sensors but rather knows a set of operational modes that can

be accessed and which provide data streams with different characteristics.

2.1.1 Data Products Management and Orchestration

InFuse has the focus set on the generation and management of a consistent and coherent environment

representation which can be accessed externally. In this direction the Data Products Management

stores in a consistent manner the environment representation data products and the Orchestrator

analyzes which of the available sensor’s operational modes and data fusion processes are the most

adequate to successfully process data product requests.

2.1.2 RCOS Independence

InFuse provides a set of libraries and development tools to support the work done by data fusion

solutions developers. InFuse aims for RCOS and robotic platform independence but pursues an easy

transition to the target RCOS in various ways (e.g. Compatible interfaces, provision of deployment

recommendations and middleware facilitators for partially automating deployment in a target RCOS).

The decision of implementing the current set of utilities and not a complete inter-process communication

and logging mechanism was taken after analyzing what could be useful for robotics perception

researchers, the context of OG3 - responsibilities with respect to OG1 - and the amount of available

resources.

Researchers on perception often have the goal of analyzing how a given algorithm or library performs

on given logged data, most often using multiple specific parameterizations. For such analyses, the

researcher is normally not interested on the details of the platform it could run on, or the target RCOS

due to the inherent independence of the algorithm or library itself. Currently, one of the problems a

researcher is facing when evaluating algorithms is the requirement of installing and running a RCOS

(which might not be stable), taking the developer into long periods of working out of his realm of interest

and expertise. InFuse aims to facilitate the data fusion expert’s work by providing a framework to

evaluate data fusion solutions with little effort in a simple as possible environment.

The transition between the developer's environment and the target system raises challenges which are

platform and RCOS specific. Thus, this is out of the scope of the project as we aim for RCOS

independence. It is arguable that it is possible to ease even more the work in this direction by providing

a more realistic communication system between data fusion nodes so as to bring it closer to the final

RCOS setup but this would imply the simulation of multiple RCOS communication mechanisms in

InFuse, and furthermore the final system’s communication will still require testing. It is also possible to

think of solutions which could be directly deployed in target systems without any transition, but again

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 15

D4.2: Advanced CDFF Architecture and ICD

these are RCOS specific solutions which, given the stage of OG1 development, does not seem realistic

(e.g. some deployment steps in TASTE have to be done currently via GUI).

2.2 Architecture Design Process

The process of design has followed these stages: First, the requirements of the framework in its

designer environment as well as for the deployed data fusion solution were collected. Second, an initial

components diagram of the overall architecture was designed. Third, the design was further detailed by

designing the sequence diagrams of some of the identified use cases.

In the second iteration of the architecture design further insights on the implementation of the use cases

are done by focusing on the design and the deployment of a Data Fusion Processing Compound for a

scenario of long term navigation.

The process of designing the architecture started with collection of the requirements which was started

in the previous work package (refer to D2.2). In parallel many concepts were discussed to achieve a

common understanding among the members of the consortium. As result of the discussions among

other documents, a glossary incorporating all the important concept to understand the architecture

designed has been produced.

Once the requirements were identified, the initial phase of architecture design produced a sketch of the

system architecture in a components diagram. This represents software modules in an organized

manner so that each module has a particular identity defined by the features it provides to the overall

system.

The initial architecture is a sketch and a more in depth insight to how the requirements are to be

provided must be done. For this purpose, use cases which require multiple functionalities from different

components were selected, designed and analyzed with the partners. This process leads to a deeper

understanding of what to do and how to approach the software implementation.

In order to further validate the approach and the adequacy of third party tools, critical use cases have

been selected and prototyped to verify the validity of the proposed architecture. This approach aimed

to identify at early stages of the development the real efforts to implement the architecture features, and

to find the most appropriate way to implement them before completely defining the architecture.

Another important part of the design of the architecture is the definition of the interfaces with other

elements of the final system. In the case of InFuse these are the autonomy framework (OG2), the

sensors suite (OG4) and the RCOS (OG1). In this context various meetings were held with the

corresponding OG representatives. As result of these meetings, in the first iteration of the architecture

design phase an initial ICD was defined. With respect to the integration with OG1, the interfacing is of

a different nature as the other ones. In this case, the interface defines how any solution defined by the

Common Data Fusion Framework can be ported to the target RCOS. Discussions with the leading

partner from OG1 helped to understand the data types that will be supported in the communication

between processes of the target Robotic Framework.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 16

D4.2: Advanced CDFF Architecture and ICD

3 Proposed architecture

The proposed process of developing data fusion solution solutions consist of two steps: (1) development

and initial evaluation on the developer’s environment and (2) deployment and testing on the target

system. These two steps can be reiterated: after evaluating the initial solution on the target system, the

logs generated by the target system’s RCOS logging module can be used in the developer’s

environment to analyze and improve the solution.

Figure 1: InFuse approach towards the development and deployment of data fusion solutions.
On the developer’s environment a set of utilities for design and evaluation are available. The

developed perception solution is design to be easy to integrate in any target system,
independently of the RCOS and the specific hardware.

An important distinction must be done between features implemented by components that belong to

the Developer’s Environment uniquely (CDFF-Dev) and components that belong to both the

Developer’s Environment and the Target System (CDFF-Core and CDFF-Support). In Table 1 a

comprehensive list of the different component and the set to which they belong is provided.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 17

D4.2: Advanced CDFF Architecture and ICD

Feature
CDFF-
Core CDFF-Support CDFF-Dev

On Target
System

On Developer
Environment

Core Libraries X X X

Common Interface (C++ Level) X X X

Data Fusion Processing Compound X X X

Orchestrator X X X

Data Product Management Tool X X X

Common Interface (Python Level) X X

Middleware Facilitator X X

Logs and Data Flow Management X X

Visualizer X X

Data Analysis and Performance Tools X X

Table 1: List of features implemented in the CDFF. CDFF-Core and CDFF-Support incorporate
all features that are included both in the target system and in the developer’s environment.

CDFF-Dev includes features which are useful for the developer to design a data fusion
processing solution as well as to evaluate existing ones using logged data. None of the

features of CDFF-Dev will be deployed in the target system.

InFuse is not conceived to be an RCOS: some features that an RCOS deal with are left aside: realtime

communication layer, hardware interaction, intelligent processes deployment... In our view these are

features that the RCOS should provide and eventually will aim at providing, as it is the only subsystem

with the complete picture of the system running components. Nevertheless, the developer can provide

helpful information in the Configuration Files to facilitate a smart deployment while the DFN Common

Interface (DFNCI) is conceived to ease the integration process in different RCOS.

3.1 CDFF-Core

The CDFF-Core provides the “core” data fusion set of state of the art algorithms and techniques

currently in use and applicable to the Planetary and Orbital RIs within the scope of Infuse, as a collection

of ready-to-use libraries or packages. These libraries represent the CDFF’s processing methods

necessary to fuse sensory data. The CDFF-Core is to be implemented in a modular fashion with a

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 18

D4.2: Advanced CDFF Architecture and ICD

common interface to allow high flexibility in configuration as well as in operation as a distributed system

on multiple platforms. The core libraries are to be deployed on the target system (robotic platform) as

well as on the designer’s environment.

Examples of core libraries include low-level functions such as feature detection, registration and

recognition, data association, state estimation, outlier removal, and filtering as well as building

environmental representations, achieving 3D object reconstruction or SLAM…

3.2 CDFF-Support

The CDFF-Support provides the necessary tools for the instantiation and execution of Data Fusion

Processing Compounds. Under the CDFF-Support functionalities can be found the Data Fusion

Processing Compound (DFPC), the Orchestrator, and the Data Product Management Tool (DPM).

CDFF-Core entities will be deployed with no change into the final target system. All components of

CDFF-Support will be deployed in the Target System and are also available for programming and

testing in the Developer Environment.

1. The Data Fusion Processing Compound (DFPC) is a combination of several nodes designed

to provide a certain data product (e.g. pose estimation, map...). The DFPC defines the

connections between input and output ports of different data fusion nodes.

2. The Orchestrator is the component that deals with the activation and deactivation of DFPCs

and configures the data connections between the nodes. It is also the component that receives

and answers the requests from the Autonomy Module (OG2). The selection of one or another

DPCH is done based on availability and quality of data sources and on the data product

required.

3. The Data Product Management (DPM) is a tool which acts as a long term memory for the data

fusion products being generated by DFPCs to be used by OG2 or other DFPCs.

3.3 CDFF-Dev

The CDFF-Dev provides the tools to develop, test, visualize, and perform analysis on data fusion

products. The CDFF-Dev include tools such as a DFPC inspector, data log replay, visualization tools,

and data analysis tools. None of the components of the CDFF-Dev are deployed on the target system.

1. The CDFF-Dev Common Interface (Python level) are python bindings provided for the DFN

common interface. This provides the developer the possibility to evaluate the data processing

solution (or library) directly from Python without the need to port the solution to a specific RCOS.

2. The Middleware Facilitator provides the CDFF the capability to partially convert a DFPC from

the designer's environment in the corresponding DFPC on the target RCOS. This utility is

foreseen to provide a nominal level of corresponding target RCOS specific wrapper code for

the CDFF-Core and CDFF-Support components.

3. The Logs and Data Flow Management is a tool that allows to inject logged data to a data

fusion process in a chronological fashion. It is envisioned to allow loading of log data produced

by different RCOS1. It replaces the communication layer of the RCOS but as this is not a tool

that will be deployed in the target system, there are no requirements regarding real time

communication. Nevertheless, the data will be timestamped so that a realistic estimation of the

1 To achieve this, specific converters for each RCOS to the CDFF types have to be implemented. In the

course of the project, converters to ROCK will optionally be implemented.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 19

D4.2: Advanced CDFF Architecture and ICD

processing time required by the DFNs is available to the designer. The outputs of the nodes in

the DFPC are also stored in logs which are used as input for posterior nodes in the processing

compound.

4. The Data Analysis and Performance Tools are comprised of statistical analysis tools and

graphical representations necessary for comparison of data fusion products resulting from

different processing chains. The goal is to provide the designer methods to assess the quality

of the data products and of the DFPC. The logs of the internally generated data are for example

useful to compare data products generated using different DFPCs.

5. The Visualizer is responsible for presenting graphical representations of the different data

products (e.g. 2D/3D plots, maps, camera images...).

Note that during the design of the architecture other features were identified with potential interest,

which could be implemented in the future. For instance, the Data Fusion Processing Compound
Configurator is a tool that enables the designer to define data fusion processing compounds (i.e. DFNs

used, order, connections, frequencies, priorities etc.). The result of using this tools is a DFPC

Configuration File. This configuration file is then used by the Middleware Facilitator to generate the

correspondent DFPC for the target RCOS. The DFPC Configuration File is also required to design the

operation logic of the Orchestrator which might handle multiple DFPCs. CDFF-Dev could provide in the

future monitoring of the execution time and memory consumption of individual components in order

facilitate the design of an embedded DFPC.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 20

D4.2: Advanced CDFF Architecture and ICD

4 Detailed description

In the following sections a more detailed review of the already presented components is presented.

4.1 CDFF-Core

4.1.1 Data Fusion Node Common Interface

The Data Fusion Node Common Interface (DFNCI) provides the abstraction layer to encapsulate each

data fusion node internal processing. The DFNCI is designed to be general enough to standardize all

cases of data fusion processing nodes, but on the other hand, it is also specific for the context of

perception and pose estimation which are at the core of data fusion in robotics.

In InFuse, the aim is to provide a RCOS independent framework. Thus, it is aimed to leave as much as

possible RCOS dependent features out of the DFNCI. On the other hand, it has been kept in mind that

any final perception solution developed and evaluated will eventually be deployed in a target RCOS.

The DFNCI eases the RCOS integration process by capturing information regarding the DFN libraries

and provides a standardized interface to harmonize different libs for future porting to target middleware

and test using different programming languages and test utilities (e.g. Python Pandas).

At the moment, RCOS components tend to have a dependency on the framework in which they were

initially developed. Furthermore, a component performing the same task might be available in more

than one RCOS, with different interfaces, and implemented with an ad-hoc glue code and logic. Our

approach to achieve framework independence is to move the logic from the RCOS interface to the

library level and to provide the generation of the glue code as much as possible automatically and

supplemented by the developer.

Figure 2: Currently Components performing a same task and using the same libraries might
have implemented at the RCOS dependent level many logic.

For CDFF-Core, current RCOS-specific implementations of data fusion nodes will be replaced by an

RCOS-independent implementation that contains the component logic. The component logic will

expose a common interface that can easily be wrapped with code for the target RCOS (e.g. for type

conversions in any RCOS). The component logic will also contain additional glue code for inter-library

method invocations, data sharing etc.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 21

D4.2: Advanced CDFF Architecture and ICD

Figure 3: Proposed approach towards RCOS independent Data Fusion Processing Nodes:
Component logic should be moved to the library level and a common interface (DFNCI) will

facilitate the integration into different RCOSs.

The DFNCI includes:

● Methods to receive and output data

● Methods for configuration of internal DFN parameters (optional)

● Methods for handling of Meta-Information of the processed data (optional). We consider these

three as the minimally required metadata fields:

○ Spatiotemporal information (transformation and timestamp)

○ Source information (sensor + parameters)

○ Processing steps gone through

● Allows to capture information regarding processing requirements.

● Allows to capture information regarding timing requirements (e.g. periodicity, synchronicity)

● Provides optional interfaces for control of the internal states by the orchestration

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 22

D4.2: Advanced CDFF Architecture and ICD

Figure 4: Artifacts of a Data Fusion Node Common Interface (DFNCI). Information in the
Interface Description will ease the process of integration in the target RCOS as well as in

orchestrated DFPCs.

4.1.1.1 Metadata Handling

The three main information that the metadata provides along with the data products are: (1) what: type

of the data product and what it refers to - this comes along with the necessary information to process

or fuse the data, e.g. calibration parameters, (2) when: date of data used have been acquired, and (3)

how: the DFN and DFPC that produced it. The first two types (what and when) of metadata are

mandatory for the DFNs and the DPM to properly handle the data, while the third type (how) would

rather be needed for execution control (orchestration) purposes, and certainly goes beyond the

requirements of the CDFF architecture. Note also that the metadata could include more information

depending on the application scenario, their definition and representation being to be defined by the

final developer.

In InFuse we evaluate various potential approaches to manage the metadata and currently not a final

decision has been taken to which one will finally be established. The following options are foreseen:

Option 1: Metadata in the data types

In this approach the metadata is already part of the types that the CDFF uses. The convenience of this

approach lies in the ease with which the metadata can be manipulated in and accessed for every data

product without the need for implementation of any additional metadata communication infrastructure.

The main drawback that we see is that the incorporation of this metadata might not be well accepted

by the maintainers of the types as it includes data that for other applications could be of no use.

Option 2: Compositions of data types

In this approach EnviRe could be used to implement the associations of data and metadata. EnviRe

can associate multiple objects to a frame and in this frame store also structures defining relations of the

objects in the frame. This solution is entire applicable internally in OG3 and would not imply any addition

of data to the base types, but the use of this approach will be more complex when communicating this

data through the middleware of OG1. Nevertheless the problem could be tackled.

Option 3: DFN for metadata association

In order to facilitate the integration of metadata along with the normal data products in a flexible and

non resource consuming manner (i.e. minimum computations and communications), the generation and

association of additional metadata (i.e. not included in the data type itself) could be done as an optional

feature that any DFN can implement.

The metadata would be generated by data fusion nodes which will read streams of data and will

generate -according to its internal implementation- the metadata associated to the data product or

products. This approach facilitates the inclusion of metadata where the developer might want to add it,

and also when it is relevant to generate (e.g. continuously, only when certain object is recognized…).

Furthermore, this approach encapsulates additional handling from all other data management. This

could be beneficial for instance for optimization. Figure 5 and Figure 6 present two data flow examples

of how the MetaData Fusion Nodes can be set.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 23

D4.2: Advanced CDFF Architecture and ICD

Figure 5: Data Fusion Nodes can be set to listen at the Data Products generated by other Data
Fusion Nodes and associate to their output additional metadata. The Data Fusion Node that
listens has implemented decision logic on when a data product should be incorporated with

metadata. The output of the listener will contain the Data Product or a reference to it and
relevant information about it (e.g. spatiotemporal, source, processing steps gone through).

Figure 6: Data Fusion Nodes can be set to monitor parts of the Data Fusion Process in
different ways. In this case the Data Fusion Node 06 listens to three Data Product streams.

4.1.2 Nodes to be included

A large set of algorithms and technologies are available for inclusion in DFNs. To select the most

appropriate and effective set of algorithms, test implementations will be created from existing code

where available and from scratch where there is no available code. Test scenarios will create data for

each type of algorithm as listed below. The most suitable methods for each application will be selected

for C++ implementation as a data fusion node. In the ideal case, one or two algorithms will be included

as the primary fusion in each category and others can be added optionally. Performance comparisons

could be done in pySPACE in the Developers Environment -not directly on the target system- once

actual outputs have been logged and assuming expected ones are also available.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 24

D4.2: Advanced CDFF Architecture and ICD

The final list of DFNs to develop and integrate within InFuse will be defined after the precise analyses

and trade-offs initiated in [RD5], which will be refined in WP5, tasks 5.1 and 5.2 (detailed specification

of the orbital and planetary RIs). The following lists the DFNs that will most likely be integrated.

4.1.2.1 Feature Detection Nodes

The following feature detection methods will be evaluated for inclusion in nodes:

● Hough Transform

● Harris Detector

● ORB

● Optional: SIFT

● Optional: SURF

For three dimensional point clouds the following feature detection methods will be evaluated:

● Harris 3D

● SHOT (Signature of Histogram of Orientations)

● Optional: PFH/FPFH

● Optional: SURF 3D

4.1.2.2 Recognition and Registration Nodes

The following recognition and registration methods will be evaluated:

● ICP

● RANSAC

● Optional: Levenberg-Marquardt

In addition, the following general data association techniques will be evaluated:

● K-Nearest Neighbors

● Linear Classifier

● Bayesian Classifier

● Dense registration

4.1.2.3 State Estimation Methods

The following non-probabilistic state estimation methods will be evaluated:

● Optical Flow Estimation

● Fuzzy Logic

● Dempster-Shafer

● Optional: Dezert-Smarandache

The following probabilistic state estimation methods will be evaluated:

● Kalman Filter

● Unscented/Cubature Kalman Filter

● Optional: Particle Filter/SMC

4.1.2.4 Data Filtering and Outlier Removal Nodes

The following data filtering and preprocessing methods will be evaluated for inclusion in nodes:

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 25

D4.2: Advanced CDFF Architecture and ICD

● FFT High/Low/Band pass filters

● Variance filter

● Decimation

● Normalization

The following outlier removal methods will be evaluated:

● Interquartile range / Mahalanobis distance

● One-class support vector machine

● Optional: Gaussian Mixture Models

● Optional: k-means

● Optional: Minimum Volume Ellipsoid

4.2 CDFF-Support

The CDFF-Support consists of a set of components that will run on the target system. These

components provide supporting tools to use multiple DFNs together and in a coordinated fashion.

Furthermore CDFF-Support also provides the Data Products Manager which stores a consistent

representation of the environment, a history of acquired pre-processed sensor data, estimated poses,

and a selection of the generated fused data products, so as related to deliver them under request to

OG2.

Figure 7: The diagram presents how the three components of the CDFF-Support interact and
also the interfacing with OG2 and OG4. The orchestrator (1) performs request to the Data

Products Manager based on what OG2 requires (2) sets the operational modes for the sensors
and (3) activates or deactivates DFPCs. The Data Product Manager (1) stores under request the

data products generated in the DFPCs and (2) retrieves under request data products for the
Orchestrator or the DFPCs.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 26

D4.2: Advanced CDFF Architecture and ICD

4.2.1 Data Fusion Processing Compound

The main feature of a Data Fusion Processing Compound is the Description File and the associated

DFNs. It states the DFNs involved in the DFPC, their connections and the processing order. This defines

the steps to produce a data product from a set of another data product(s).

In more details, the description file contains:

● Description of the data fusion functionality - intermediate processing steps, input data to the

DFPC and fused data outputs of the DFPC.

● List of required DFNs and their corresponding libraries

● Configuration, periodicity and priority of each DFN in the DFPC

● Connections description between the DFNs

● Frames (static and dynamic transformations) applicable to each DFN

● Optional

○ Semantics

○ Deployment recommendation

○ Nominal frequency of operation

○ Recommended queues lengths

○ Build instructions

In the Data Fusion Processing Compound Description File, information about possible ways in which

the DFNs can be distributed among threads in order to maximize the efficiency of the CDFF depending

on the target system is optionally included. The format of the description file will offer the possibility to

specify on which thread each DFN should be executed depending on the number of available threads.

A format to describe this information will be proposed, in order to facilitate the deployment task to either

a user, to a middleware facilitator or target RCOS that could automatically use this information to

partially or fully deploy a DFPC in a desired RCOS.

In order to develop a DFPC to be integrated in a robotic platform, the model of the robot is needed: (1)

The names of the frames that are associated to the sources of the data (sensors) and to the target

frame on which the fused data should be given must match the frames of the robot model. (2) The robot

model is needed to set up the transformation graph from which the transformations can be obtained

and (3) the robot geometric model might be required for some DFNs (Ex. odometry).

4.2.1.1 Example of a data Fusion Processing Compound and the Description File

The following example was taken from an existing robotic software stack implemented in the RCOS

Rock2. In the proposed example a lidar sensor is mounted on top of a tilting unit actuated via a dynamixel

servo out, while moving up and down the lidar captures 2D scans of the environment. The DFPC

performs the composition of the 2D scans taken with varying inclinations into a pointcloud. Furthermore

a filter that removes parts of the robot from the 2D scans is included.

The corresponding DFPC describes a one layer lidar sensor (data source) connected to a lidar filter.

The output of this last one is connected to a DFN node called Tilt Scan that produces the pointcloud.

2 Rock RCOS website: http://rock-robotics.org/stable/

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 27

D4.2: Advanced CDFF Architecture and ICD

To produce this pointcloud the status -transformations for the tilt- of the dynamixel is passed to the Tilt

Scan DFN.

Figure 8: This figure describes an example of a DFPC, two data sources (laser and dynamixel)
connect with two DFNs. The data product that is generated is pointcloud and the input data

types are 2D scan samples and servo status (including motor position).

● Description of the functionality

○ Create pointclouds from of sensor data of a two dimensional lidar which is mounted on

a servo and the status of the servo. The generated pointclouds can then be used for

instance build DEMs which the autonomy framework will use for planning.

● List of required DFNs and libraries

○ Transformer, robot model and base-types

● Configuration, periodicity and priority of each DFN in the DFPC

○ Frame names:

■ Laser: Laser_frame <from robot model>

■ Dynamixel: Dynamixel_frame <from robot model>

■ Dynamixel Base: Dynamixel_base_frame <from robot model>

○ Periodicity:

■ Laser_Filter: scan_input_triggered

■ Tilt_Scan: scan_input_triggered

○ Priority:

■ Laser_Filter: 1

■ Tilt_Scan: 1

● Networks description

○ Inputs:

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 28

D4.2: Advanced CDFF Architecture and ICD

■ Laser: <2D scann_sample_type>

■ Dynamixel: <status_sample_type>

○ Outputs:

■ Pointcloud

○ Laser.out.scan_samples.connects_to(Laser_filter.in.scan_samples)

○ Laser_filter.out.scan_samples.connects_to(Tilt_Scan.in.scan_samples)

○ Dynamixel.out.status.connects_to(Tilt_Scan.in.joint_status)

● Frames (static and dynamic transformations)

○ Static:

■ Dynamixel_frame To Base_Dynamixel_Frame: <Path_to_robot_model>

○ Dynamic:

■ Laser To Dynamixel_frame: <Dynamixel.out.status>

● Optional

○ Semantics

○ Deployment recommendation

○ Nominal frequency, queues lengths

○ Build instructions

In this particular case the robot geometric model is needed to set the names of the source frame, the

dynamixel frame and the target frame, and to set up the transformation graph with which the status of

the dynamixel (dynamic transformations) will be feed.

4.2.2 Orchestrator

The orchestrator is an important functional component in the CDFF that has the main task of receiving

queries from OG2 to activate certain DFPCs within OG3 and provide the fused data products to OG2

in the desired format. It acts as the central coordinator in the target system to control the activation

states of DFPCs. The orchestrator has the following functions:

1. Interface between OG2-OG3

a. Accepts requests from OG2 with a set of criteria to select an appropriate DFPC

b. Provide a response about feasibility of the request

c. Provide the fused data to OG2 as a response synchronously (preferred option by OG2)

d. Notify OG2 that the fused data is available to be read i.e. asynchronously

2. Translate the perception and localization data into the format required by OG2 (or other DF

product consumers) by accessing data products in the DPM.

3. Interface with OG4 Instrument Control Unit (ICU) to configure a limited set of sensor parameters

(operational modes) influenced indirectly by OG2 requirement of data products with specific

characteristics (resolution, range, data size, update rate etc.)

4. Interface with the Data Product Management (DPM) tool and provide mechanisms for querying

fused data products

5. Activation and deactivation of DFPCs according to data product requests and operational

modes of the sensors..

Optionally the orchestrator could provide additional functional capabilities:

1. Runtime monitoring of active DFPCs such as processing status, performance and memory

constraints.

2. Functionality for selecting sub-components within a DFPC and initiating (or stopping) them for

actual execution of the DFPC.

3. Provides a scripting (or user interface) mechanism for inserting or modifying DFPC descriptions

that are stored in a repository

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 29

D4.2: Advanced CDFF Architecture and ICD

Figure 9: Internal software components of the Orchestrator and its interactions with other
CDFF and external software modules

The diagram in Figure 9 illustrates the internal software components of the orchestrator and interactions

with the DPM, DFPCs, OG2 and OG4. The DFPC state controller ensures that a selected DFPC is

activated by loading the appropriate run time libraries with the associated executable. This includes the

task of mapping an OG2 request to the most appropriate DFPC that can satisfy the OG2 criterion.

4.2.3 Data Products Management Tool

4.2.3.1 Motivations

Within the CDFF, a series of varied data and data products are processed and generated by a variety

of DFNs. There is a need to store in a dedicated database a selection of these data structures, for

different purposes such as:

 Serve OG2 requests for specific data products: for instance the Total Rover Map, which will

certainly be requested at the end of a Long Traverse mission, requires the integration of (most

of) the data gathered during the traverse, or of the various (Fused) Rover Maps that have been

produced during the traverse.

 Serve the Operators, who may request specific data after the execution of a mission: for

instance some data gathered in the vicinity of detected scientific target for further ground

processing and analyses before commanding the rover to sample it.

 Serve internal CDFF purposes. Here various operations require the storage of data, either over

the short or the long term, for instance:

o To properly handle the asynchronicity of the data acquisition. Even if all the data are

gathered in a synchronous manner, their processing require some time, and thus some

data production may be delayed. For instance the precise position of the robot at the

time of a 3D point cloud acquisition may be known only after a visual odometry process

has refined the associated position.

o By essence, SLAM solutions require the memorisation of environment related data (the

maps of the M of SLAM, which are not necessarily products delivered to OG2).

Depending on the selected SLAM implementation, such data can be landmarks, visual

keyframes, point clouds keyframes, chunks of digital maps. etc. Most SLAM suites

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 30

D4.2: Advanced CDFF Architecture and ICD

actually handle the management of such data internally, but there is an interest to

expose them within a more principled spatial database management system.

 Prepare multi-robot cooperation schemes: similarly to the fact that environment related

information are at the core of autonomous mobile robots, shared environment related

information are at the core of the development of any multi-robot cooperation scheme. For

instance a robot traversing an area already traversed by an other one may benefit from the

information already gathered, be it for planning or localisation purposes: one robot's OG2 or

OG3 sub-systems may require data stored by an other robots OG3 sub-system.

It is the role of the Data Product Management to memorise and manage the acquired data, the

processed data and the generated data products that may be required for all these needs.

4.2.3.2 DPM implementation

Of course by no means all the data that is processed within the CDFF data can be stored: the DPM

must manage the data stored so far, and be able to expose relevant data products to the various client’s

processes that require them.

The DPM can be seen a robotics-dedicated Geographic Information System (GIS). With respect to the

activated DFNs and DFPCs in the CDFF, the DPM will process the data insertion requests. Internally,

it manages all the spatial related data by implementing insertion, deletion or update functions, aiming

at satisfying future needs for data products and storage constraints. With respect to the other systems

and subsystems, the DPM acts as a server of data products for client processes, whatever they are (i.e.

internal OG3-InFuse processes or OG2-Ergo processes).

Internally the DPM will manage an EnviRe Graph in which multiple data products will be stored in a

spatiotemporal consistent manner. Data Products might be serialized in this module to free memory

usage. Given a request, the serialized data products shall be deserialized and deliver or the reference

to a serialized object might be delivered instead. EnviRe currently provides serialization for various data

types related to environment representation (e.g. maps) and it is extendable to enable serialization of

further data types.

4.3 CDFF-Dev

Through the CDFF-Dev utilities, the developer will be able to: (1) connect DFNs and evaluate them with

logged data, (2) define DFPCs and evaluate them with logged data, (3) test the orchestrator with logged

data, (4) test the DPM tool with logged data, (5) run performance analysis to evaluate at least data

filtering and outlier removal nodes and (6) visualize data communicated through DFNs using the Envire

visualizer. Additionally, CDFF-Dev provides a Middleware Facilitator which eases the transition from

the developer environment to the target system.

4.3.1 CDFF-Dev Common Interface

The DFNCI will provide Python bindings to allow prototyping of DFPCs or newly integrated DFNs. The

bindings will be automatically generated, either based on the Node definition file or directly based on

the C++ header of the DFN that implements the DFNCI. A tool to automatically generate wrappers for

DFNs is provided in CDFF-Dev if the DFN only uses InFuse data types at its interface. The bindings

will be based on Cython, which makes it easy to develop Python extensions that directly wrap existing

C++ libraries. An example of a generated wrapper is shown in the next figure.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 31

D4.2: Advanced CDFF Architecture and ICD

Figure 10: An example of Python bindings generated for a DFN. A node that implements the
DFNCI is displayed on the left side. On the right side, the auto completion from the IPython

REPL is used to display the methods in Python.

4.3.2 Middleware Facilitator

The Middleware Facilitator component eases the process of transferring the data fusion solution from

the developer’s environment to the target system - RCOS and robot specific-.

Figure 11: Terminology: MW Component - Library(s) + mw wrapper (system level process);
Task - Threads running within the MW Component; DF-Lib - one or more DF algorithm

implementations with appropriate interfaces

Figure 11 introduces some terminology that will ease the understanding of the following description.

The middleware facilitator includes a code generator that will:

● Generate templates for the DFNCI

● Generate Python bindings for the DFNCI

● Generate, a template (e.g. for Rock tasks) wrapping the DFNCI, including

○ Port names and types

○ Properties and types

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 32

D4.2: Advanced CDFF Architecture and ICD

○ Type conversions

It will not contain temporal alignment of input ports, component frequencies, a description of the state

machine or complex inheritance structures, and it will not generate the build configuration files because

this is considered too complicated for a framework-agnostic code generation tool.

The Figure 12 gives an example for a very simple case. The developer writes a node definition file

which defines inputs and outputs of the node, and configuration options. A base class that implements

the DFNCI is generated automatically. The developer has to implement the logic that uses a RCOS-

independent library to implement the DFNCI. From the DFNCI, Python bindings can be generated. In

addition, templates for several RCOS like Rock or ROS could be generated. For the case of the RCOS

TASTE the generation of such template might not be possible, because the classical design of modules

involves the use of Graphical User Interfaces. The developer has to configure these templates, e.g. in

order to align the inputs temporally, define the component frequencies, or configure the build process

of the component. Libraries for type conversions between RCOS types and InFuse types must be

available to facilitate the generation and development of the RCOS component.

Figure 12: The DFNCI template for a DFN will be generated from the node definition file. In
addition, we can generate templates for RCOS components and a Python wrapper.

The Figure 13 presents a class diagram that shows the relations of the generated and manually

implemented modules.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 33

D4.2: Advanced CDFF Architecture and ICD

Figure 13: Class diagram of a node that implements the DFNCI. A Python binding and a
template for a Rock component could be generated automatically. Red color indicates files

that will be implemented by the developer

4.3.3 Logs and Data Flow Management

The Logs and Data Flow Management (LDFM) module is a set of utilities that facilitates the Developer

of DFPCs the connections between logs and core libraries (with the Data Fusion Node Common

Interface) inputs and outputs. The LDFM belongs to the CDFF-Dev set of features and it is not deployed

in the target system. The LDFM is not conceived as substitute of an RCOS but rather as an utility to

evaluate - in the developer's environment - the adequacy of a DFN or a DFPC with logged data.

The Log Player is a tool that allows to replay a data fusion process in a chronological fashion following

the timestamps of the data samples processed. The player should allow to play log data produced by

different RCOS. To achieve this, specific converters for each framework to the intermediate log format

have to be implemented. InFuse types must be serializable in the intermediate log format.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 34

D4.2: Advanced CDFF Architecture and ICD

Figure 14: Conversions from RCOS-specific log formats to an intermediate log format that is
independent of the RCOS have to be implemented. On the side of the DFNCI, conversions to

the data types of the library have to be implemented.

The following subcomponents will be implemented:

● Data Flow Control: emulates the communication layer of an RCOS

● Log Player: allows to replay data fusion processes in a chronological fashion

The implementation of the data flow control is in a single process with one thread, everything is

sequential. It will be lightweight; it should not be an RCOS replacement. It will have a simple API that

can be directly controlled, e.g. from a Python REPL. An example of a sequence diagram in a simple

scenario is shown in Figure 15.

Figure 15: Sequence diagram that shows how a user could interact via REPL with the log
player and the data flow control.

4.3.3.1 Python Bindings for EnviRe

Envire is a package for representing arbitrary information on the environment for robotics. The purpose

is to have a common way of holding any information related to the environment of a robot and how the

information relates to each other in a consistent representation. The applications of EnviRe varies

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 35

D4.2: Advanced CDFF Architecture and ICD

between environment representation, navigation, planning and simulation. The model is a strongly

connected directed graph which allows data acquisition, processing, and operations regarding

autonomous systems demands.

In the context of InFuse, the EnviRe graph will be used as symbolic representation and structuring of

the spatio-temporal information, as well as to facilitate the attribution of metadata. The visualization of

EnviRe will be used to analyze data that is stored in the graph.

In order to use EnviRe as a tool in CDFF-Dev, Python bindings will be implemented as the graph and

the visualization must become available in Python. The tool Cython will be used to wrap the C++

libraries directly. Data types that should be stored in EnviRe graphs must also be wrapped in Python.

Because Python has a dynamic type system and C++ has a static type system, the exact template

specialization for EnviRe have to be known during compilation of the Python extension, hence, it is not

possible to write generic Python bindings for EnviRe that accept arbitrary Python types.

4.3.4 Data Analysis and Performance Tools

The Python Signal Processing And Classification Environment (pySPACE) will be used to analyze and

compare different data fusion processing compounds (DFPCs). In the context of InFuse the main

aspect of pySPACE is to be used for benchmarking purposes and for the integration of general filtering

and outlier removal for sensor data.

Figure 16: Visualization of pySPACE node chains. pySPACE can distribute the execution of
independent node chains that will be compared over different processing units, e.g. CPUs.

PySPACE is a powerful tool that enables parallel process execution and offers more than 100 machine

learning and signal processing algorithms that are implemented exclusively for pySPACE and wrappers

for libraries like scikit-learn, Weka, and libsvm. It is easy to prototype and evaluate node chains that are

not yet implemented for an RCOS.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 36

D4.2: Advanced CDFF Architecture and ICD

Figure 17: pySPACE provides a large number of nodes for preprocessing, feature generation,
classification, visualization, etc.

PySPACE can be used to compare and analyse the performance (e.g., classification accuracy...) of

several algorithms and parameter configurations easily in a graphical user interface. PySPACE also

provides a ‘launch_live’ mode where you can directly execute signal processing as soon as you have

the data in an online fashion. A multitude of metrics is already available for machine learning methods.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 37

D4.2: Advanced CDFF Architecture and ICD

Figure 18: pySPACE offers various metrics and visualization tools to compare different
machine learning and signal processing methods.

The general workflow for optimizing a DFN can be summarized as the following: Provided the data

source to a specific node (which can be user specified or supplied by the previous node in the chain),

a metadata.yaml file is setup which maps the header of the data being processed into a yaml file that

is typically used in pySPACE. In the metadata file the user can choose between selecting all or part of

the data features to be processed. Next a configuration file is setup, where the user can chain operation

nodes selecting different algorithms as well as different parameter settings to be compared. It is also

possible to compare the performance of full processing pipelines. After setting up the configuration file,

the processing is then launched and the evaluation results are then synced together into a csv file. The

results can be easily visualized using the performance analysis tool (as shown in the figure above). The

parameter of the best performing node can then be exported to the corresponding node of the DFPC.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 38

D4.2: Advanced CDFF Architecture and ICD

Figure 19: pySPACE will be used as a tool to evaluate signal processing and machine learning
nodes that will be deployed on the robot.

The workflow of developing machine learning and signal processing methods for DFPCs will include an

initial evaluation of several methods that can be done in Python with pySPACE. Selected algorithms

will be implemented in C++.

The implementation in C++ will have a constrained interface -DFNCI- which will be implemented by the

developer of the node. For this interface, a Python wrapper can be generated automatically and a

generic node for pySPACE is able wrap these nodes. The pySPACE node needs a serialization method,

i.e. it automatically determines parameters of the model and stores them in a string. There is a

distinction between transformation nodes (signal processing) and trainable nodes (machine learning).

Method calls from the pySPACE node will be forwarded to C++.

Example: in practice, an algorithm can have an unconstrained implementation that is provided by some

library (MyAlgorithmLibrary). The pySPACE interface (MyAlgorithmPySpace, C++) has to be

implemented. For a transformation node, only the method execute(), which does the transformation, has

to be implemented. For a machine learning node, the methods isTrainable(), isSupervised(), train(...),

stopTraining(), and incTrain(...) must be implemented. Serialization and deserialization methods (e.g.

fromYaml(...), toYaml()) are required. A tool to automatically generate the Python bindings

(MyAlgorithmPySPACE, Python) will be available. For transformation nodes, the CppTransformationNode

will be available in pySPACE, for machine learning nodes, the CppTrainableNode will be available.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 39

D4.2: Advanced CDFF Architecture and ICD

Figure 20: Class diagram that shows how a hypothetical algorithm MyAlgorithm can be
integrated in pySPACE as a pySPACE node.

4.3.5 Visualization Tools

The EnviRe visualization tool will be used in the developer’s environment to visualize the data products

generated at different stages of the DFPCs. In order to visualize the data product Python bindings to

the data type will be required as well as a visualization plugin for the type. Currently Envire Visualizer

support Vizkit visualization plugins. There exist already Vizkit plugins for the base-types library3 upon

which the OG1 types are based, for map types compatible with those4 and for other types commonly

used in robotic applications.

3 Base-types: https://github.com/rock-core/base-types

4 Slam maps: https://github.com/envire/slam-maps

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 40

D4.2: Advanced CDFF Architecture and ICD

Figure 21: The 2D representation of the Envire graph can be visualized using Envire
Visualization. The 2D view presents all the transformation as well as the objects stored in each

frame with their correspondent type name. In this image a robot model is visualized.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 41

D4.2: Advanced CDFF Architecture and ICD

Figure 22: The 3D representation of the Envire graph can be visualized using Envire
Visualization. The different transformations, frames as well as the objects contained them can

be inspected. In this visualization the visual components of a robot model are shown.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 42

D4.2: Advanced CDFF Architecture and ICD

5 Interface Control Document

5.1 OG3 Product Definition

OG3 offers the Data Fusion Module for processing sensor data produce and generate from it the pose

information and maps, required by the planning module (OG2). In Figure 23, the modules of autonomy

(OG2), perception (OG3) and sensor (OG4) are presented as well as the RCOS (OG1).

Figure 23: The figure above allows to identify the potential set of interactions between OG3 on
the one hand and OG2 and OG4 on the other hand. OG4 is understood as including a hardware

part – i.e. the physical sensors, and a software part consisting of the drivers and pre-
processing capabilities included in I3DS.

5.1.1 Identification of OG3 Interactions with other OGs

OG3 is controlled by OG2 in two ways: (1) OG2 is responsible for the initialization of OG3 and (2) OG2

through request of data products triggers the activation in OG3 of the most suitable Data Fusion

Processing Compounds to satisfy the request. OG2 is also responsible for the activation of OG4

(sensor).

Although OG2 is responsible for the decisions in the overall architecture, OG3 can trigger the activation

of operational modes of OG4. These operational modes determine the preprocessing steps, the sensor

data generated and the interfaces through which is sent. Each pre-processed sensor data delivered by

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 43

D4.2: Advanced CDFF Architecture and ICD

OG4 is associated to its correspondent interface. Each interface is associated to only one specific type

of sensor data and pre-processing steps.

The data products generated by OG3 will also be communicated through specific interfaces for each

data type associated to the request received. In Figure 24 the consensual approach for the interactions

of OG3 with other OGs is summarized.

The requests for sensor data will always go through OG3. In order to increase efficiency, only the fused

data will come from OG3 and any direct output from OG4 requested by OG2 will come directly from

OG4 to OG2.

Figure 24: Summary of the interactions of OG3 with other OGs

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 44

D4.2: Advanced CDFF Architecture and ICD

5.1.2 Data Products Generated by OG3

The data products generated by OG3 are specified by the needs expressed by OG2-ERGO in

ERGO_D1.2 “System Requirements”. They are split in two families: information related to the

environment (terrain or target), and information related to the position of the controlled system (rover or

servicing satellite) with respect to the environment.

Note that besides the data products exported to OG2-ERGO, OG3 generates data products for its own

needs: they are not listed in this document.

5.1.3 Planetary reference implementation

The main information related to the environment exploited by OG2-ERGO are Digital Elevation Maps

(DEM), a 2.5D representation of the terrain defined over a regular Cartesian grid, which encodes terrain

heights. These maps are possibly completed with an Uncertainty Map and a Soil Type Map, that share

the same structure, but encode respectively the uncertainty on the height and the soil type.

Depending on the data that has been fused to produce these maps, their resolution, extent and

reference frame differ. ERGO_D1_2 has defined three different maps:

● The RoverMap only integrates data perceived from a single rover position, and is expressed in

the rover reference frame (this map is used to detect and avoid obstacles while driving)

● The FusedRoverMap integrates data perceived from various recent positions of the rover, and

is expressed in a local terrain reference frame (this map is used to plan local rover trajectories)

● The FusedTotalMap integrates all the data gathered by the rover and other available

information, and is expressed in a global absolute frame (this map is used to plan long term

itineraries)

Note the associated data structures are defined by the following parameters: map extent (rectangular

area, in meters), map resolution (size of the DEM cell, in meters), and map content (height, uncertainty,

soil type).

Rover localization information is required by OG2 for the following purposes:

● At a rather high frequency (10Hz), to control the execution of the short term planned paths

● To plan local paths, so as to generate trajectories that follow the long term planned path

● To plan long term path using in particular the orbiter map

What distinguishes pieces of localization information (besides the inner OG3 processes that produce

them) is the reference frame in which they are expressed. OG3 proposes the following reference

frames:

 AbsoluteFrame: is the “geo-reference” frame attached to the planet

 GlobalTerrainFrame: is a reference frame in which is defined a whole navigation mission

 (a long term path). The Cartesian Coordinates of the frame should be x/y/z = East/Nort/Up.

 LocalTerrainFrame: is a reference frame in which are defined the local trajectories. For this

reference frame the z component corresponds to upward.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 45

D4.2: Advanced CDFF Architecture and ICD

 RoverFrame is the frame associated to the rover body. The localization information pertains to

this frame. Its orientation is usually "x-forward, y-leftward, z-upward".

Given the fact that the the various localization information are produced by different processes, at

different frequencies (and sometimes upon request) and express an information in different reference

frames, we define three different interfaces:

● LocalPose: Pose of the BodyFrame in the LocalTerrainFrame

● GlobalPose: Pose of the BodyFrame in the GlobalTerrainFrame

● AbsolutePose: Pose of the BodyFrame in the AbsoluteFrame

Each of these pose consists of 3-axes attitude and 3-axes position information, with associated

uncertainties (format to be defined: uncertainties on the 6 pose parameters, covariance matrix …).

5.1.4 Orbital reference implementation

The sole information related to the environment in the orbital scenario are the following:

1. The partial 3D model of the target spacecraft, built from data gathered by the servicing chaser

spacecraft

2. The localization information is the relative position of the target Body Frame with respect to the

Servicing Body Frame, associated to relative speeds.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 46

D4.2: Advanced CDFF Architecture and ICD

5.2 Internal Interfaces

In this section the list of the methods identified for the internal interfaces is provided. In Figure

25 a component diagram showing the interfaces is presented.

Figure 25: The internal interfaces are (1) Data Product Retrieval and (2) Data Product Storage
implemented by the Data Product Manager and (3) Activation DFPCs implemented by the

DFPCs

5.2.1 Data Product Storage

This interface is implemented by the DPM to receive requests for the storage of data products. Details

for these requests are still to be defined internally.

Interface Method Description

DPMI storeDEM A DEM data product is passed as parameter which should be stored
by the DPM

DPMI storePose A Pose data product is passed as parameter which should be stored
by the DPM

Table 2: Interface Data Product Storage implemented by the Data Products Manager

5.2.2 Data Product Retrieval

This interface is implemented by the DPM to answer requests for the retrieval of data products. Details

for these requests are still to be defined internally.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 47

D4.2: Advanced CDFF Architecture and ICD

Interface Method Description

DPMI getDEM A DEM data product or the serialized reference to it is returned.

DPMI getPose A Pose is returned by the DPM.

Table 3: Interface Data Product Retrieval implemented by the Data Products Manager

5.2.3 Activation DFPCs

Table 4 presents the methods of the DFPC interface. In this case, to clarify the relationship with the

Data Fusion Nodes the Data Fusion Node Common Interface related methods are also included.

Interface Method Description

DFNCI initialize Activates a DFN. It can be called multiple times, e.g. after stop has
been called or before any other method has been called.

DFNCI stop Deactivates a DFN. Can only be called after initialize has been called.

DFPC initialize Calls ‘initialize’ for each DFN of the DFPC.

DFPC stop Calls ‘stop’ for each DFN of the DFPC.

Table 4: Interface of the DFPCs for the Orchestrator

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 48

D4.2: Advanced CDFF Architecture and ICD

5.3 Interface with OG1

The developer designs a deployment network. If necessary, type conversions between internal types

and externally communicated types must be implemented by the developer. Transmitted data types can

be custom designed by the developer (in agreement with other relevant OGs) or are predefined (as

defined in OG1). The developer integrates a component network in the interface view. OG1 will

generate code scaffolds for each OG1 component that will be implemented by the developer. The

source code of the whole component or a static library must be provided by the developer. In the

deployment view, the developer will specify how the components will be deployed on the target system.

In Figure 25 the workflow to integrate the products from OG3 in OG1 is presented.

Figure 26: Workflow to integrate OG3 in OG1

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 49

D4.2: Advanced CDFF Architecture and ICD

5.3.1 I/F Requirements

OG3-OG1/S/001/001/V0.1

Data View: Data that will be transmitted between OG1 components will be represented by ASN.1 types.

OG1 provides an interface to design new data types that are transmitted between components.

OG3-OG1/S/001/002/V0.1

A predefined set of types that can be used by OG3 will be provided by OG1 (base types).

OG3-OG1/S/002/001/V0.1

Interface view: OG1 provides a graphical user interface to design component networks. It will be

possible to generate a C++ code scaffold for each component of the network. Code scaffolds will be

filled by OG3 with glue code (e.g. type conversions) so that the components that will be developed in

OG3 (Data Product Manager, the Orchestrator and Data Fusion Processing Compounds) are available

in OG1. For the cases were InFuse components use internally ASN1 types, less glue code will be

needed when integrating with ESROCOS (e.g. type conversions not needed).

OG3-OG1/S/002/002/V0.1

There are multiple options how the components developed in OG3 can be mapped to OG1 modules:

1. Data Product Manager (DPM), Orchestrator, and Data Fusion Processing Compounds (DFPC)

form a single OG1 module.

2. DPM and Orchestrator are in separate OG1 module. Each DFPC is in a separate OG1 module.

3. The Orchestrator is in a separate module, the DFPCs and the DPM are in a single module.

4. DFPCs can be fragmented to the point of having each data fusion node as an OG1 module

OG3 won’t control the scheduling of any OG1 module (e.g. stopping a module).

OG3-OG1/S/003/001/V0.1

OG1 component lifecycle: OG1 components provide a predefined component life cycle that includes a

configuration and a runtime state.

OG3-OG1/S/003/002/V0.1

It must be possible to set the configuration of a OG1 node at least once before processing begins.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 50

D4.2: Advanced CDFF Architecture and ICD

OG3-OG1/S/004/001/V0.1

OG1 provides a library for geometric coordinate frame transformations.

OG3-OG1/S/004/002/V0.1

OG1 provides a forward and instantaneous kinematics computation library.

OG3-OG1/S/005/001/V0.1

Deployment view: The component network that has been defined in the interface view must be compiled

to an executable program. OG1 must provide the functionality.

OG3-OG1/S/005/002/V0.1

Build system: Components that are developed in OG3 will either be compiled to a single static library

that can be linked into an OG1 node or all the necessary C++ headers and implementation files will be

available so that they can be used to compile the OG1 component.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 51

D4.2: Advanced CDFF Architecture and ICD

5.4 Interface with OG2

OG2 is responsible for planning during the complete mission. The internal state of OG3 needs to be

initialized to begin accepting requests to start DF processes. As long as the mission continues, OG2

can send to OG3 to generate fused data products (maps or poses). These request will be done through

a generic querying method. Once the request has been received and processed, OG3 will either (1)

confirm that the request will be performed, or (2) in case that the request cannot be performed, report

to OG2 with the correspondent message. After generating the correspondent data product, it is

delivered to OG2. The delivered data product can be a periodic data update or a unique data product.

The streams are provided to OG2 synchronously (possibly a polling mechanism to check if the data is

available) interface which is univocally associated to the data product requested. At any point after

performing a request, OG2 can send a cancellation of that same request. In Figure 26 the

communication workflow between OG2 and OG3 is presented.

Figure 27: Communication workflow between OG2 and OG3. On the left diagram the main
operational loop is presented. On the right one, the operation to stop a request.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 52

D4.2: Advanced CDFF Architecture and ICD

5.4.1 I/F Requirements

OG2-OG3/S/001/002/V0.1

OG3 provides an interface to OG2 to initialize, reset or put the CDFF framework into an idle state (no

processing). This can be used by OG2 to command the runtime internal state of the data fusion

framework (not to be confused with the OG1 run time states). The specific parameters could be desired

state of system:

1. Initialize - Inform CDFF to be prepared for accepting requests from OG2

2. Idle - Inform CDFF to stop processing DFPCs from previous requests

3. Reset - Inform CDFF to clear the previous OG2 requests that are currently being processed by

stopping the corresponding DFPCs. This will enable OG2 to send a completely new set of

requests.

OG2-OG3/S/002/001/V0.1

OG3 provides an interface for OG2 to query and get a notification on the current state of the CDFF

framework to OG2. This can be used by OG2 to check the state before posting a new request that

influences the internal runtime state of OG3 as indicated in OG2-OG3/S/001/001/V0.1. The return type

is the current state of the system with associated data. This needs to be elaborated in further iterations.

OG2-OG3/S/003/001/V0.1

OG3 provides an interface for OG2 to query the CDFF orchestrator based on a set of criteria of

parameters for activating DFPCs. OG3 internally maintains a list of possible CDFFs that can be selected

indirectly by OG2 based on a specific set of parameters such as:

1. List of sensors activated by OG2

2. Default configurations or operational modes of sensors

3. Type of fused maps (rover map, fused rover map and fused total mapl)

4. Resolution of fused data (maps)

5. Update frequency (localization and map updates)

6. Area coverage (map)

7. Time bounds for providing specific fused data for aperiodic requests

8. Priority of request (to manage request queue in OG3)

The match between OG2 request and the selection of OG4’s mode of operation will be clear and explicit.

All of this will be pre-defined, for each reference implementation, so that in the scope of the project

neither OG2 nor OG3 will have provision decision making mechanisms for what concerns the sensors

selection. The decided approach eliminates the possibility of sending to OG4 conflicting operational

modes commands from OG2 and OG3.

The orchestrator software component within CDFF has the task to map the criteria to a specific DFPC

that can optimally satisfy the above requirements.

OG2-OG3/S/003/002/V0.1

This interface can be used by OG2 to get an update regarding the runtime status of the DFPC in terms

of the quality of data inputs from OG4 (raw and pre-processed) and the quality of fused data products

in terms of maps and localization data.

OG2-OG3/S/004/001/V0.1

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 53

D4.2: Advanced CDFF Architecture and ICD

Interface provided by OG2 to OG3 for providing fused data updates. There are 2 mechanisms that are

foreseen:

1. For aperiodic requests from OG2 (Ex. absolute localization, global fused map etc.), OG3 will

notify OG2 regarding the availability of fused data and provide access to the data buffer with

corresponding information on the data type. The notification is foreseen to be asynchronous

due the inherent delay in producing fused data for a specific query from OG2.

2. For OG2 requests that require OG3 to generate periodic data (local rover map, high frequency

local pose estimates etc.), a predefined data stream for specific data types will be used to send

the fused data periodically to OG2.

OG2-OG3/D/001/001/V0.1

This interface produces the Rover Map.

OG2-OG3/D/002/001/V0.1

This interface produces the Fused Rover Map

OG2-OG3/D/003/001/V0.1

This interface produces the Fused Total Map

OG2-OG3/D/004/001/V0.1

This interface produces the LocalPose Pose of the BodyFrame in the LocalTerrainFrame

OG2-OG3/D/005/001/V0.1

This interface produces the 3D model of the target spacecraft.

OG2-OG3/D/006/001/V0.1

This interface produces the GlobalPose Pose of the BodyFrame in the GlobalTerrainFrame

OG2-OG3/D/007/001/V0.1

This interface produces the AbsolutePose Pose of the BodyFrame in the AbsoluteFrame

OG2-OG3/D/008/001/V0.1

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 54

D4.2: Advanced CDFF Architecture and ICD

This interface is the relative pose (3 axes position and 3 axes attitude) of the target Body Frame

expressed in the chaser Body Frame, with associated uncertainties (format to be defined)

OG2-OG3/D/009/001/V0.1

This interface is the relative speed (3 axes translation speeds and 3 axes rotation speeds) of the target

Body Frame expressed in the chaser Body Frame, with associated uncertainties (format to be defined)

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 55

D4.2: Advanced CDFF Architecture and ICD

5.5 Interface with OG4

Before any interaction between OG4 and OG3 can take place, both modules have to be initialized. It is

assumed at this stage that OG2 is responsible for the initialization of the different components and OG1

is the responsible of the initialization of OG2.

As long as OG3 is active, the activities of OG3 will can be summarized as follows: As long as there is

an active Data Product Request, OG3 will keep activate the correspondent most suitable preset (i.e.

configuration values agreed in advance) of OG4 and read the from the correspondent data stream.

Each preset has associated OG4 Producer Interfaces (PI) in a unitary manner (i.e. one PI only produces

one type of data according to the associated preset). OG3 will then the correspondent PI’s associated

to the preset. If there is not any active Data Product Request, nothing will be done.

In Figure 27 the communication workflow between OG3 and OG4 is depicted.

Figure 28: Communication workflow between OG3 and OG4

5.5.1 Sensor Data Inputs from OG4

Sensor Type Data type ESROCOS ASN 1 data type5 Metadata Modification required in
the ASN1 type

HR camera Image (RGB)
Transform
metadata must be
available.

asn/Frame.asn

frame-time,
received-time,
attributes,
datasize,
data-depth,
pixel-size,
row-size,
frame-mode,
frame-status,
calibration parameters

Geometric frame name
(not in type definition)

Calibration parameters

Stereo camera Disparity map Similar to asn/Frame.asn type for
frame but with float values

frame-time,
received-time,
attributes,
datasize,
data-depth,
pixel-size,
row-size,
frame-mode,
frame-status,

Geometric frame name (not in
type definition)

The type does not exist

Depth map asn/DepthMap.asn ref-time, No modifications required

5 ASN1 types defined in ESROCOS: https://github.com/ESROCOS/types-base

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 57

D4.2: Advanced CDFF Architecture and ICD

Sensor Type Data type ESROCOS ASN 1 data type5 Metadata Modification required in
the ASN1 type

timestamps,
vertical-projection, horizontal-
projection, vertical-interval,
horizontal-interval, vertical-size,
horizontal-size, remissions,

Geometric frame name
(not in type definition)

Point cloud6
arranged in a
so that
correspondences
between
points and pixels
and the reference
camera
 (usually the left)
are possible

asn/Pointcloud.asn ref-time,
colors,

Geometric frame name (not in
type definition)

No modifications required

Raw images asn/Frame.asn frame-time,
received-time,
attributes,
datasize,
data-depth,
pixel-size,
row-size,
frame-mode,
frame-status,

Calibration parameters
have to be included

6 Pointcloud units should be meters

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 58

D4.2: Advanced CDFF Architecture and ICD

Sensor Type Data type ESROCOS ASN 1 data type5 Metadata Modification required in
the ASN1 type

calibration parameters

Geometric frame name (not in
type definition)

Corrected images asn/Frame.asn frame-time,
received-time,
attributes,
datasize,
data-depth,
pixel-size,
row-size,
frame-mode,
frame-status,
calibration parameters,
Baseline of the stereovision
bench,

Geometric frame name (not in
type definition)

Calibration parameters
have to be included.
Baseline of the stereovision
bench has to be included.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 59

D4.2: Advanced CDFF Architecture and ICD

Sensor Type Data type ESROCOS ASN 1 data type5 Metadata Modification required in
the ASN1 type

LiDAR7 Point cloud8 asn/Pointcloud.asn ref-time,

colors,

reflectances,

Geometric frame name (not in

type definition)

The Reflectances are

missing in the type, this

metainformation about

each point of the pcl can

be used to determine

information about the

object. Some lidars

provides sequences of

reflectances and not just

one. Thus, the sequence

of Reflectance objects.

The Reflectance object

can be defined as:

Reflectance SEQUENCE

(SIZE(1..maxPointcloudSi

ze)) OF float

2D laser scan types-

sensor_samples/asn/LaserScan.as

n

ref-time,
start-angle,
angular-resolution,
speed,
ranges,
minRange,
maxRange,
remission,
reflectances

Geometric frame name (not in
type definition)

The Reflectances are
missing in the type, this
metainformation about
each point of the pcl can
be used to determine
information about the
object.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 60

D4.2: Advanced CDFF Architecture and ICD

Sensor Type Data type ESROCOS ASN 1 data type5 Metadata Modification required in
the ASN1 type

TIR camera Image asn/Frame.asn frame-time,
received-time,
attributes,
datasize,
data-depth,
pixel-size,
row-size,
frame-mode,
frame-status,
Calibration parameters

spectral_range

Geometric frame name (not in
type definition)

The spectral range has to be
included it can be defined as:

SEQUENCE (SIZE(1..2)) OF
T-Float

7 Depth map if specific to the COTS sensor

8 Pointcloud units should be meters

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 61

D4.2: Advanced CDFF Architecture and ICD

Sensor Type Data type ESROCOS ASN 1 data type5 Metadata Modification required in
the ASN1 type

ToF camera

Point cloud9 asn/Pointcloud.asn Intensity Image,
Confidence map,
ref-time,
colors

Geometric frame name (not
in type definition)

Intensity Image and
Confidence map have to
be included in a new type
extending the Point Cloud

For the intensity image
and the Confidence map
the asn/Frame.asn type
can be used.

Radar Point cloud10 asn/Pointcloud.asn ref-time,
colors

Geometric frame name (not
in type definition)

No modifications required

9 Pointcloud units should be meters

10 Pointcloud units should be meters

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 62

D4.2: Advanced CDFF Architecture and ICD

Sensor Type Data type ESROCOS ASN 1 data type5 Metadata Modification required in
the ASN1 type

Structured light
camera

Depth map asn/DepthMap.asn ref-time,

timestamps,

vertical-projection,

horizontal-projection,

vertical-interval,

horizontal-interval,

vertical-size,

horizontal-size,

remissions

Geometric frame name (not in

type definition)

No modifications required

Raw image asn/Frame.asn frame-time,
received-time,
attributes,
datasize,
data-depth,
pixel-size,
row-size,
frame-mode,
frame-status,
calibration parameters,
Baseline of the stereovision
bench,

Geometric frame name (not in
type definition)

Calibration parameters have
to be included.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 63

D4.2: Advanced CDFF Architecture and ICD

Sensor Type Data type ESROCOS ASN 1 data type5 Metadata Modification required in
the ASN1 type

Structured light
camera

Corrected images asn/Frame.asn frame-time,
received-time,
attributes,
datasize,
data-depth,
pixel-size,
row-size,
frame-mode,
frame-status,
calibration parameters,
Baseline of the stereovision
bench,

Geometric frame name (not in
type definition)

Calibration parameters have
to be included.

IMU Inertial
measurements

asn/IMUSensors.asn Timestamp

Geometric frame name (not
in type definition)

No modifications required

End effector
force/torque
sensor

Linear forces or
torques at end
effector

Asn1 type for Wrench11 Timestamp,
Geometric frame name

No modifications needed

11 ESROCOS ASN1 Type for Wrench: https://github.com/ESROCOS/types-base/blob/master/asn/Wrench.asn

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 64

D4.2: Advanced CDFF Architecture and ICD

Sensor Type Data type ESROCOS ASN 1 data type5 Metadata Modification required in
the ASN1 type

Start tracker Rotation with
respect to tracked
star.

asn/RigidBodyState.asn timestamp,
sourceFrame,
targetFrame

No modification required

Table 5: Sensor data inputs from OG4

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 65

D4.2: Advanced CDFF Architecture and ICD

Metadata Type Data Type Asn1 Data Type

Modification required in the ASN1

type definition

Time Time asn/Time.asn No modifications required

Frame-size-t
Width
height types-sensor_samples/asn/Frame.asn

No modifications required

Frame-mode-t,

mode-undefined,
mode-grayscale,
mode-rgb,
mode-uyvy,
mode-bgr,
mode-rgb32,
raw-modes,
mode-bayer,
mode-bayer-rggb,
mode-bayer-grbg,
mode-bayer-bggr,
mode-bayer-gbrg,
compressed-modes,
mode-pjpg,
mode-jpeg,
mode-png asn/Frame.asn

No modifications required

Frame-status-t

status-empty,
status-valid,
status-invalid asn/Frame.asn

No modifications required

Frame-attrib-t
data T-String,
att-name T-String asn/Frame.asn

No modifications required

Calibration
Parameters

4 floats for the intrinsic matrix:
- alpha_u, alpha_v, u_0, v_0
5 floats for the distortion:
- k1, k2, k3, t1, t2

Type doesn’t exists in ASN1
definitions

Table 6 Metadata Data Types

5.5.2 Interfaces Requirements

OG3-OG4/D/001/000/V0.1

OG3 supports ASN.1 messages defined by OG4 following OG1 specification for all communication with

OG4.

OG3-OG4/D/002/000/V0.1

OG4 provides data samples (simulated and actual) to OG3 throughout the course of the project.

OG3-OG4/F/001/000/V0.1

OG4 I3DS ensures compatibility with OG3 Common Data Fusion Framework.

OG3-OG4/F/002/000/V0.1

OG4 supports operational modes as the primary way of controlling the sensor suite. Each mode consists

of a set of active sensors with a given configuration that is verified to operate correctly with regards to

throughput and latency.

OG3-OG4/F/003/000/V0.1

OG4 provides a list of specific modes per use-case to operate the sensor suite ensuring the limitations of

available data rates, bandwidth and power consumption.

OG3-OG4/F/004/000/V0.1

OG4 receives commands from OG3 to enable pre-defined sensors configurations and sensors data

provisions.

OG3-OG4/F/005/000/V0.1

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 67

D4.2: Advanced CDFF Architecture and ICD

OG4 provides sensor measurements and accepts commands through the OG1 middleware. The supported

sensors are listed in the product tree.

OG3-OG4/F/006/000/V0.1

OG4 performs pre-processing for the Time Of Flight Camera, the Stereo Camera, the High Resolution

Camera, the Thermal InfraRed Camera, the High Frequency Radar and the Lidar. OG3 will have access
to the intermediate products.

OG3-OG4/F/007/000/V0.1

OG4 performs the following pre-processing for the Time of Flight Camera: Point Cloud Generation. OG3
will have access to the intermediate products. In this case, Depth Map.

OG3-OG4/F/008/000/V0.1

OG4 performs the following pre-processing for the Stereo Camera: Lens Vignetting, Histogram

Equalisation, Optical Distortion (Lens radial and geometric distortion correction), Stereo Rectification,

Dense Stereo Matching Disparity Map Production (TBD), Sparse Stereo Matching (TBD), Dense Depth

Map Production (TBD), Sparse Depth Point Cloud (TBD). OG3 will have access to the intermediate
products.

OG3-OG4/F/009/000/V0.1

OG4 performs the following pre-processing for the High Resolution Camera: Lens Vignetting Correction,

Histogram Equalisation, Optical Distortion Correction, Feature Detection and Temporal Matching,

Structured Light Pattern Detection, Depth Map Point Cloud Production from Structured Light (TBD). OG3
will have access to the intermediate products.

OG3-OG4/F/010/000/V0.1

OG4 performs the following pre-processing for the Thermal InfraRed Camera: Lens Vignetting Correction,

Histogram Equalisation, Optical Distortion Correction, Feature Detection and Temporal Matching. OG3 will
have access to the intermediate products.

OG3-OG4/F/011/000/V0.1

OG4 performs the following pre-processing for the HF Radar: Point Cloud Generation. The radar

information could be used for long or short distance mapping.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 68

D4.2: Advanced CDFF Architecture and ICD

OG3-OG4/F/012/000/V0.1

OG4 performs the following pre-processing for the LIDAR: Point Cloud Generation.

OG3-OG4/F/013/000/V0.1

OG4 provides to OG3 either raw sensors data or pre-processed data. Both cannot be performed

simultaneously.

OG3-OG4/F/014/000/V0.1

OG4 performs time stamping for pre-processed and raw data.

OG3-OG4/O/001/000/V0.1

The operational mode can become parameters to be configured in the future.

OG3-OG4/O/002/000/V0.1

OG4 does not check the sender of command messages; therefore OG2 and OG3 must coordinate

commanding of OG4 to avoid conflicting commands.

OG3-OG4/O/003/000/V0.1

OG4 does not store measurements for later retrieval; therefore OG3 receives the data at the specified

rate12.

OG3-OG4/P/001/001/V0.1

12 Related Issue: Not clear if OG1 or OG2 controls the communication buffers between OG4 and OG3.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 69

D4.2: Advanced CDFF Architecture and ICD

Before any interaction between OG4 and OG3 can take place, both modules have to be initialized. It is

assumed at this stage that OG2 is responsible for the initialization of the different components and OG1 is

the responsible of the initialization of OG2.

OG3-OG4/S/001/001/V0.1

An interface is required for OG3 to be able to configure a limited set of parameters of a group of sensors

providing data to a DFPC or alternatively to select among pre-defined configuration modes that are

compatible with a DFPC.

After OG2 triggers a set of sensors for a particular task, the default configuration of the sensors might not

be optimal for data fusion due to changing conditions (Ex. ambient lighting, camera exposure etc.) that

produce multiple outliers or unusable data (Ex. saturated images, lack of correspondence features etc.).

This interface aims to provide a mechanism for OG3 to set a suitable configuration for some limited

parameters within each operational mode of OG4 for some sensors relevant for a DFPC to produce the

required quality of fused data products (e.g. exposure of the camera or framerate).

OG3-OG4/S/001/002/V0.1

OG4 provides raw or pre-preprocessed sensor data to OG3 from the sensors through this interface. The

sensors and the corresponding pre-preprocessing steps are configured by the function OG3-

OG4/S/001/001/V0.1.

OG3-OG4/S/001/003/V0.1

The preprocessing steps that the data has gone through in OG4 is known to OG3 because it is associated

to the OG4 sensors operation mode selected by function OG3-OG4/S/001/002/V0.1. The software

interfaces through which each sensor data is delivered, is defined in the operation mode of OG4. For each

pre-processed sensor data there is an associated software interface which is only used for that pre-

processed sensor data and is not used in any other operation mode unless exactly the same pre-processed

sensor data is produced.

OG3-OG4/S/002/001/V0.1

OG 4 provides metadata related to the pre-processing steps the sensor data has gone through. The

metadata is provided through a different interface than the data itself and it is timestamped.

OG3-OG4/S/002/002/V0.1

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 70

D4.2: Advanced CDFF Architecture and ICD

OG4 metadata to OG3 from the sensors and the sensor filters as configured by the function OG3-

OG4/S/001/001/V0.1. In the configuration is included the interface for each metadata product.

OG3-OG4/S/003/001/V0.1

Once OG4 sends any data over the data interface, if OG3 is not ready to process the data, this will be lost.

An interface is therefore required for OG3 to inform OG4 that a specific DFPC has been selected based on

an OG2 request (OG2-OG3/S/003/001/V0.1) and that the DFPC is in a ready state to process sensor data

from OG4. Hence this mechanism allows OG4 to send data after the DFPC is initialized and ready to

process sensor data to begin producing fused data as outputs.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 71

D4.2: Advanced CDFF Architecture and ICD

5.6 Rover and Manipulation Interface

5.6.1 Sensor Data Inputs from OG6

Some sensors which are typically available in robotics systems are currently not included in OG4 sensor’s

suite. Thus, an additional interface is defined which should be provided for validation by either (1) OG6, the

facilitators framework, by (2) OG2 or (3) OG4.

Sensor Type Data type ASN 1 data type13 Metadata Modifications
Required in the ASN1
Type

Manipulator joint states Joint angle positions and

velocity
Asn1 type for JointState14 Timestamp,

Geometric frame name

Position resolution

Velocity resolution

Rover wheel encoders Position of the joints of the

wheels
 Asn1 type for Joints15 Timestamp,

Names,
Geometric frame names

Position resolution

Velocity resolution

Manipulator force/torque

sensor

Linear forces or torques at

joint
Asn1 type for Wrench16 Timestamp,

Geometric frame name
No modifications needed

Manipulator force/torque

sensors

Linear forces or torques at

joints composition
Asn1 type for Wrenches17 Timestamp,

Names,

Geometric frame names

No modifications needed

Wheel-Based Odometry Global pose estimate and

differential pose estimate

(based on wheel encoder

measurements and rover

model)

Asn1 type for

RigidBodyState18

Timestamp,

Source Frame,

Targe tFrame

No modifications needed

Table 7 Data inputs from the Rover and Manipulation interface

13 ASN1 types defined in ESROCOS: https://github.com/ESROCOS/types-base
14 ESROCOS ASN1 type for JointState: https://github.com/ESROCOS/types-base/blob/master/asn/JointState.asn
15 ESROCOS ASN1 Type for Joints: https://github.com/ESROCOS/types-base/blob/master/asn/Joints.asn
16 ESROCOS ASN1 Type for Wrench: https://github.com/ESROCOS/types-base/blob/master/asn/Wrench.asn
17 ESROCOS ASN1 Type for Wrenches: https://github.com/ESROCOS/types-base/blob/master/asn/Wrenches.asn
18 ESROCOS ASN1 Type for RigidBodyState: https://github.com/ESROCOS/types-base/blob/master/asn/RigidBodyState.asn

5.6.2 I/F Requirements

OG3-OG6/D/001/000/V0.1

OG6 supports ASN.1 messages defined by OG6 following OG1 specification for all communication with

OG6.

OG3-OG6/F/001/000/V0.1

OG6 provides raw or pre-preprocessed sensor data to OG3 from the manipulator Joints through this

interface.

OG3-OG6/F/002/000/V0.1

OG6 provides raw or pre-preprocessed sensor data to OG3 from the Rover Wheel encoders through this

interface.

OG3-OG6/F/003/000/V0.1

OG6 provides raw or pre-preprocessed sensor data to OG3 from a particular manipulator force/torque

sensor through this interface.

OG3-OG6/F/004/000/V0.1

OG6 provides raw or pre-preprocessed sensor data to OG3 from sets of manipulator force/torque sensors

through this interface

OG3-OG6/F/005/000/V0.1

OG6 provides global pose estimation based on the rover encoders and on the robot geometric model to

OG3 through this interface

OG3-OG6/F/005/001/V0.1

OG6 provides differential pose estimationa based on the rover encoders and on the robot geometric model

to OG3 through this interface

OG3-OG6/F/001/000/V0.1

OG4 provides sensor measurements and accepts commands through the OG1 middleware. The supported

sensors are listed in the product tree.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 74

D4.2: Advanced CDFF Architecture and ICD

6 Conclusion

The architecture and ICD of InFuse are the key components of this deliverables. As of the PDR milestone,

an advanced version of these elements were released in this document, that should serve as baseline to

carry out a detailed design work in the next work package (dealing with detailed design). By the CDR, it is

intended to have a very detailed specification of software components to be implemented, to the level of

classes, detailed logics and data flows, etc. using on UML.

On the ICD side, it is still expected that further refinements may occur until the CDR, as the assumptions

expressed in this document will be further harmonized with other OGs’ ones.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 75

D4.2: Advanced CDFF Architecture and ICD

Appendix 1: Glossary

Target System

The robotic system that will be used for the final mission. This includes also the RCOS under which the

different modules run -OG1 in our case-.

Developer’s Environment

The setup that the designer of perception solutions uses to evaluate different approaches. Once a solution

has been designed and implemented, it can be exported to the target system.

CDFF-Core

Part of the CDFF which contains the set of techniques for data fusion implemented in a modular fashion

with a Data Fusion Common Interface (DFNCI) to allow high flexibility in configuration as well as in operation

as a distributed system on multiple platforms and libraries dedicated to data filtering and outliers removal.

CDFF-Support

Part of the CDFF which Includes orchestration, data product management. This part of the CDFF is

integrated in the final Target System.

CDFF-Dev19

Not integrated in the target system. Encapsulates all the features of the CDFF which are used only in the

designer environment (i.e. won’t be integrated in the target system).

Data Fusion Node (DFN)

Is a software library for data fusion which is defined in the CDFF-Core. These libraries are independent of

the CDFF itself but as units might not provide a complete data fusion solution.

Data fusion processing compound20 (DFPC)

 Libraries connected through a DFNCI by the CDFF. A DFPC is designed to provide a certain data product

(e.g. pose estimation, map...). A same DFPC can be implemented with different programming languages

and can be executed on multiple RCOS, though it must be adapted to the specificities of these. In Figure

28 a simplified DFPC to perform mapping is presented in the context of OG3. A DFPC is composed CDFF-

Core Libraries and CDFF-Support DFPC. The DFPC implementation will differ depending on the target

RCOS but the functionality should be the same.

19 Named CDFF-Utils in previous documents

20 Named Data Fusion Processing Chain in previous documents

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 76

D4.2: Advanced CDFF Architecture and ICD

Figure 29: Example of a DFPC. A DFPC receives sensor data as inputs (provided by OG4) and
produces Data Fusion Products (delivered to OG2 by the Orchestrator).

Data Product Management tool (DPM)

The series of processes that select, structure and store the raw data, intermediary data products and final

data products acquired and generated within InFuse.

Operating System (OS)

Software that provides basic computing system functions and an interface to hardware, a Real-Time

Operating System (RTOS) implies hard real-time operation.

RCOS or Robotics Middleware

Software framework that facilitates the integration of multiple libraries, supports communications, enables

configurations and provides control over them. Furthermore, the RCOS provides control over operating

system of the controlled system and to its sensors and actuators.

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 77

D4.2: Advanced CDFF Architecture and ICD

Appendix 2: InFuse CDFF Product Tree

Figure 30: Product Tree of InFuse Common Data Fusion Framework

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 78

D4.2: Advanced CDFF Architecture and ICD

Appendix 3: Libraries and Data Types

To implement the different DFNs and support components a list of libraries which the consortium
is considering using is provided.

Library name Description Link

Open CV Library for Image
Processing.

http://opencv.org/

PCL Library for 3D pointclouds
processing

http://pointclouds.org/

OctoMap 3D maps library https://octomap.github.io/

ESROCOS
Base Types

Types defined in ASN1
which OG1 supports

https://github.com/ESROCOS/types-base

Base Types Library for types https://github.com/rock-core/base-types

Slam/Maps Maps Types https://github.com/envire/slam-maps

G2O Graph Optimization
Framework

https://github.com/RainerKuemmerle/g2o

URDF Robot Model Library https://github.com/ros/robot_model

EnviRe Libraries for Environment
Representation and
Visualization

http://envire.github.io/

Vizkit 3D Visualization Plugins https://github.com/rock-gui/gui-
vizkit_3d_plugins

Eigen 3 Library for linear algebra:
matrices, vectors, numerical
solvers and related
algorithms

http://eigen.tuxfamily.org

LIBSVM A library for support vector
machines

https://www.csie.ntu.edu.tw/~cjlin/libsvm/

Aquila,
sigpack,
DSPFilters

Libraries for signal
processing which will be
studied

http://aquila-dsp.org,
http://sigpack.sourceforge.net,
https://github.com/vinniefalco/DSPFilters

Table 8: Tentative list of libraries and type definitions that will be used in InFuse

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 79

D4.2: Advanced CDFF Architecture and ICD

Appendix 4: Requirements Traceability Matrix

The requirements were organized in the System Requirements Document (deliverable 3.2) according to a

previous categorization of the features. In this appendix the requirements remain organized as previously

to facilitate tracking with the previous document.

CDFF Core

User Requirements (UserR)

Req. ID Compliance

(yes / no / partial)

Section where it is
addressed

Comments

SR_UserR_A101 Yes 4.1.2.1

SR_UserR_A102 Yes 4.1.2

SR_UserR_A103 Yes 4.1.2

SR_UserR_A104 Yes 4.1.2

SR_UserR_A105 Yes 4.1.2

SR_UserR_A106 Yes 4.1.2

SR_UserR_A107 Yes 4.1.2

SR_UserR_A108 Yes 4.1.2.4

SR_UserR_A109 Yes 4.1.2

SR_UserR_A110 Yes 4.1.2

SR_UserR_A111 Yes 4.1

SR_UserR_A112 Yes 4.2

SR_UserR_A113 Yes 4.1.2

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 80

D4.2: Advanced CDFF Architecture and ICD

SR_UserR_A114 Yes

SR_UserR_A115 Yes 4.2.2

SR_UserR_A116 Partial. Visualization
is only provided on
the Developer’s
Environment

4.3.5

SR_UserR_A117 Yes 4.1.

Functional Requirements (FuncR)

Req. ID Compliance

(yes / no / partial)

Section where it is
addressed

Comments

SR_FuncR_A201 yes, not explicitly
addressed

4.1.2

SR_FuncR_A202 yes, not explicitly
addressed

4.1.2

SR_FuncR_A203 yes, not explicitly
addressed

4.1.2

Req. ID Compliance

(yes / no / partial)

Section where it is
addressed

Comments

SR_FuncR_A204 yes, not explicitly
addressed

4.1.2

SR_FuncR_A205 Partial 4.1.2 Question on OG6 /
GNC with the orbital
track => answer from
PSA send by PSA on

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 81

D4.2: Advanced CDFF Architecture and ICD

Thursday, 23 March,
2017 7:31:46 PM

SR_FuncR_A206 yes, not explicitly
addressed

4.1.2

SR_FuncR_A207 yes, not explicitly
addressed

4.1.2

SR_FuncR_A208 yes, not explicitly
addressed

4.1.2

SR_FuncR_A209 yes, not explicitly
addressed

4.1.2

SR_FuncR_A210 yes, not explicitly
addressed

4.1.2

SR_FuncR_A211 yes, not explicitly
addressed

4.1.2

SR_FuncR_A212 yes, not explicitly
addressed

4.1.2

SR_FuncR_A213 yes, not explicitly
addressed

4.1.2

SR_FuncR_A214 yes, not explicitly
addressed

4.1.2

SR_FuncR_A215 Yes 5.5.1

SR_FuncR_A216 Yes 5.5.1

SR_FuncR_A217 Yes 5.5.1

SR_FuncR_A218 Yes 5.5.1

SR_FuncR_A219 Yes 5.5.1

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 82

D4.2: Advanced CDFF Architecture and ICD

SR_FuncR_A220 Yes 5.5.1

SR_FuncR_A221 Yes, not explicitly
addressed

SR_FuncR_A222 Yes 5.5.1

SR_FuncR_A223 Yes 4.1.2.4

SR_FuncR_A224 Yes 4.1.2.3

SR_FuncR_A225 Yes 4.1.2.2

SR_FuncR_A226 Yes 4.1.2.3

SR_FuncR_A227 Yes, not explicitly
addressed

SR_FuncR_A228 Partially The InFuse
architecture and
functions will be able
to support such
scenarios, but will be
partially
demonstrated, only
within the InFuse
consortium.

Performance Requirements (PerfR)

Req. ID Compliance

(yes / no / partial)

Section where it is
addressed

Comments

SR_PerfR_A301 Yes 3.3, 4.2.1., 4.2.2

SR_PerfR_A302 Yes 3.3, 4.2.1., 4.2.2

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 83

D4.2: Advanced CDFF Architecture and ICD

SR_PerfR_A303 Yes 3.3, 4.2.1., 4.2.2

SR_PerfR_A304 Yes 3.3, 4.2.1., 4.2.2

SR_PerfR_A305 Yes 3.3, 4.2.1., 4.2.2

SR_PerfR_A306 Yes 3.3, 4.2.1., 4.2.2

SR_PerfR_A307 Yes 3.3, 4.2.1., 4.2.2

SR_PerfR_A308 Yes 3.3, 4.2.1., 4.2.2

Interface Requirements (IntR)

Req. ID Compliance

(yes / no / partial)

Section where it is
addressed

Comments

SR_IntR_A403 Yes 4.1.1, (5.3)

SR_IntR_A404 Yes 4.1.1, (5.5.1)

SR_IntR_A405 Yes 4.1.1.1

SR_IntR_A406 Yes 4.2.3

SR_IntR_A407 Yes 4.2.3

SR_IntR_A408 Yes 4.2.3

SR_IntR_A409 Yes 4.2.3

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 84

D4.2: Advanced CDFF Architecture and ICD

Resource Requirements (ResR)

Req. ID Compliance

(yes / no / partial)

Section where it is
addressed

Comments

SR_ResR_A501 Yes 4.1.1

SR_ResR_A502 Yes, not explicitly
addressed

SR_ResR_A503 Yes 4.1.2

SR_ResR_A504 Yes 4.1.2

SR_ResR_A505 Yes 4.1.2

Operational Requirements (OpR)

Req. ID Compliance

(yes / no / partial)

Section where it is
addressed

Comments

SR_OpR_A601 Yes 4.2.2

SR_OpR_A602 partial OG1 related.
Inspection utilities
should be provided by
the RCOS

SR_OpR_A603 Yes 4.2.2

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 85

D4.2: Advanced CDFF Architecture and ICD

SR_OpR_A604 partial, via
configuration

Product assurance and safety requirements (ProdR)

Not Applicable.

Configuration and implementation requirements (ConfR)

Req. ID Compliance

(yes / no / partial)

Section where it is
addressed

Comments

SR_ConfR_A801 Yes 4.1.1, 5.4

SR_ConfR_A802 Yes 4.1.1, 5.5

SR_ConfR_A803 Yes ?

SR_ConfR_A804 Yes ?

SR_ConfR_A805 Yes ?

SR_ConfR_A806 Yes ?

SR_ConfR_A807 Partial, 5.5 depends on RCOS

Test and Validation (ValR)

Req. ID Compliance

(yes / no / partial)

Section where it is
addressed

Comments

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 86

D4.2: Advanced CDFF Architecture and ICD

SR_ValR_A901 Yes -

SR_ValR_A902 Yes -

SR_ValR_A903 Yes In Related Document
D4.1

TBD?

SR_ValR_A921 Yes -

SR_ValR_A922 Yes In Related Document
D4.1

SR_ValR_A923 Yes -

SR_ValR_A924 Yes - TBD

SR_ValR_A951 Yes In Related Document
D4.1

SR_ValR_A961 Yes In Document D4.1

CDFF Dev

User Requirements (UserR)

Req. ID Compliance

(yes / no / partial)

Section where it is
addressed

Comments

SR_UserR_B101 Yes 4.3.3

SR_UserR_B102 Yes 4.3.3

SR_UserR_B103 Yes 4.3.5

SR_UserR_B104 Yes 4.3.5

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 87

D4.2: Advanced CDFF Architecture and ICD

SR_UserR_B105 Partial, - OG1 related. Part of
the RCOS, depends
on the target platform

SR_UserR_B106 Yes 4.1.2

SR_UserR_B107 Yes 4

Functional Requirements (FuncR)

Req. ID Compliance

(yes / no / partial)

Section where it is
addressed

Comments

SR_FuncR_B201 Yes 4.3.3

SR_FuncR_B202 Yes 4.3

SR_FuncR_B203 Yes 4.3.5

SR_FuncR_B204 Yes 4.3.4 The performance

analysis can be

checked better on the

target system with all

the frameworks

integrated

SR_FuncR_B205 Yes 5.5

SR_FuncR_B206 Yes 4.2 and 4.3

SR_FuncR_B207 Yes 4.2.2 and 5.4.1

SR_FuncR_B208 Yes 4.1.2

SR_FuncR_B209 Yes 4.3.5 The visualizations are

only possible in the

Developers

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 88

D4.2: Advanced CDFF Architecture and ICD

Environment. On the

target system they

should be supported by

the RCOS.

SR_FuncR_B210 Yes 4.3.2

SR_FuncR_B211 Yes 4.2.2

Performance Requirements (PerfR)

NA.

Interface Requirements (IntR)

Req. ID Compliance

(yes / no / partial)

Section where it is
addressed

Comments

SR_IntR_B401 Yes 5.2

Resource Requirements (ResR)

Req. ID Compliance

(yes / no / partial)

Section where it is
addressed

Comments

SR_ResR_B501 Yes 4.1, 5.3

SR_ResR_B502 Yes, but depends on
DFPC

4.2

SR_ResR_B503 Yes, not explicitly
addressed

-

Reference : InFuse_WP4_D4.2

Version : 1.2.0

Date : 15-09-2017

Page : 89

D4.2: Advanced CDFF Architecture and ICD

Operational Requirements (OpR)

NA.

Product assurance and safety requirements (ProdR)

NA.

Configuration and implementation requirements (ConfR)

Req. ID Compliance

(yes / no / partial)

Section where it is
addressed

Comments

SR_ConfR_B801 Yes 4.1.1, 4.2.1

