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Executive Summary

This document presents the detailed design of the InFuse CDFF. It consists of an
implementation detail of CDFF components in orbital track. The document provides the
detail design, including internal and external interfaces of Data Fusion Node (DFN), Data
Fusion Processing Compound (DFPC), and also exposes interfaces to an external such as
0G4 and OG2. Several use cases are identified and related detail design of DFPCs and
DFNs are extensively described. Consequently, this document serves as a guideline for the
software development of the orbital track associated to the CDFF framework.
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1 Introduction

1.1 Purpose

The purpose of this document is to provide a detailed design for the implementation of
orbital reference scenarios. The detailed design includes the definition and specification of
EGSE as well as the software detailed design. The software design is based on the CDFF
preliminary design [RD7] and the technical trade-off analysis [RD5]. The document
addresses two related reference implementations (i.e. integration and validation tracks), the
first one at the consortium level, RI-INFUSE, the second one at the SRC Space Robotics
level, RI-SRC.SR. The objective of RI-INFUSE is to demonstrate and evaluate the full
capabilities of the CDFF, from space compliant to state-of-the-art algorithms, from
traditional to innovative sensors, and possibly including control in the loop. The objective of
RI-SRC.SR is to demonstrate CDFF is ready to be integrated with OG1, OG4 and OG6.

1.2 Document Structure

In brief, the document is structured as follows:
Section 1: This introductory material.
Section 2: The reference scenarios and validation of the implementation

Section 3: The system modeling of the test bed to emulate a chaser and target satellite of
OOS operations.

Section 4: The detailed architecture and design - of the data fusion processing compound
( DFPC) and associated DFN

Section 5: Detailed description of EGSE that will be used for testing and validating Orbital
reference implementation of CDFF.

Section 6: Conclusion
Section 7: Reference

Section 8: Appendix

1.3 Applicable Documents
AD1  InFuse Grant Agreement

AD2 InFuse Consortium Agreement

AD3 InFuse internal management manual for project partners
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1.4 Reference Documents

RD1  Description of Action document

RD2 D2.2: System Requirements and Operational Concept

RD3 D2.3: Functional and Physical Architecture Specification

RD4 D3.2: System Requirements and Scenario descriptions

RD5 D4.1 Technical Trade-off Analysis
RD6 Facilitators Interface Control Document

RD7 DA4. 2 Preliminary Design Document

RD8 D5.2 Planetary Rl and associated EGSE Detailed Design

1.5 Acronyms

DF: Data Fusion

CDFF: Common Data Fusion Framework
API: Application Program Interface

OOS: On-Orbit Servicing

RCOS: Robot Control Operating System
DFN: Data Fusion Node

DFPC: Data Fusion Process Chain/Compound
DFNCI: Data Fusion Node Common Interface
DPM: Data Product Manager

HDL: Hardware Description Language

HLS: High-Level Synthesis

MW: Middleware

LOS: Line of Sight

Fps: Frames per second
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OOS-sim: On Orbit Servicing simulator
OG: Operational Grant

IMU: Inertial Measurement Unit

OT: Orbital Track

PT: Planetary track

OBC: On Board Computer

DEM: Digital Elevation Model

FPGA: Field Programmable Gate Array
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2 Reference Scenarios Implementation

Here we describe the detailed implementation, and associated demonstration and
validation scenarios presented in [RID4 & RIDS5].

2.1 Introduction

A rendezvous mission for an on-orbit servicing has been defined irrespective of an orbit
(LEO, MEO,GEO) in [RID4], hence the choice of an orbit is left to the end user of the CDFF.
The performance of the reference implementation is influenced mainly by the intensity and
direction of the sun with the respect to visual and TOF sensors. The reference
implementation (RI) takes account of various conditions of space lighting by employing
appropriate rendezvous sensors such as a LIDAR and a camera system. Moreover, the RI
should address the space environment related to the target background which poses
challenges during approach or proximity operation. The target background may be the
following:

e Deep space background ( Fig.1), where the sensor points away from the Earth and
towards space objects. In this case, other celestial bodies such as stars may exist
as a background (not shown here)

e Farth and deep space (Fig.2), the sensor line of sight slightly drifted from nadir
direction, enabling the Earth and deep space in sensors field of view. The sensor
may also point completely toward the nadir direction

Figure 1: Deep Space background to a target
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Consequently, the mission definition, preparation and execution should consider such
sensor and target configuration with respect to space or Earth in order that the RI captures
typical scenarios of a space mission.

Furthermore, it is possible to assume a certain orbit in space to support navigation to the
target satellite so that the dynamics of the client spacecraft can be used to predict and filter

the state estimate provided by CDFF. This choice of orbit will be left for the end user of the
CDFF.

Figure 2: Earth and deep space background to the target

The RI of the orbital track consists in the relative localization, which include approaching a
target spacecraft from far-range to docking/berthing of to/on the desired region of interest.
In practice, the rendezvous of a target space object is bounded by range and time as
illustrated in the following Figure (the numerical values are approximate and varies
according to the requirements of a certain mission). The range of operations pose specific
requirement in specification, design and implementation of sensor and software
components. Moreover, the farther the target from the servicer is, the lesser the accuracy
requirement.
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Servicer
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Figure 3: lllustration of a spacecraft (a servicer) rendezvous to a target from far-range to
close-range and states that should be estimated.

The demonstration and validation of orbital scenario can be performed by

e Software simulation, for example rendering the target at various ranges
e Hardware and software simulation

The software simulation is relatively easy and flexible validation approach in order to
reproduce the on-orbit scenarios, demonstrate and validate the CDFF framework as well as
DFPCs. However, such validation approach is not sufficient to reproduce the real space
environment and optical characteristics of the target spacecraft. Thus, the DFPCs
demonstrated with a software simulation environment could not reliably capture the real
world scenarios that could encounter in space missions.

More realistic validation approach is to simulate the space environment and the optical
characteristics of the target satellite with a representative hardware, such as a sun
simulator with a high power floodlight, full or scaled mock-up of a target satellite and deep
space or Earth’s albedo background. This is what we call an Electrical Ground Support
Equipment (EGSE). However, the hardware simulation limits the range of operation. This
range limitation can be partially overcome by using

e scaled mock-up of a satellite
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e representative subranges for mid-range validation.

We foresee the latter approach to validate the DFPCs in the mid-range and close-range.
Table 1 shows the rendezvous ranges often used for on-orbit servicing and formation flying
mission, and a demonstration and validation distances in InFuse.

Range Approximate InFuse
distance demonstration and
validation distance

Observables

Far-range 10’s km to 100°’s m N/A Bearing and range

Mid-range 100°s mto5m 17mto 2m Position and
attitude

Close-range 5mto 1m 2mto0.5m Position and
attitude

Table 1: Rendezvous and demonstration / validation ranges, and respective observables

The reference implementation will be demonstrated and validated with the data recorded
with OG6 facilities listed in Table 2.

OG6 Facility Validation range Remark
DLR OOS-sim Close-range
GMV facility Mid-range recorded data and

collaboration with 0G4
sensors

Table 2: Demonstration and validation range and associated EGSE

In order to validate in the mid-range, the sensor data recorded at OG6-GMV facility should
consist in at least

- sequence of time stamped point clouds from LIDAR and corresponding
synchronized ground truth pose trajectory

- sequence of time stamped stereo images and corresponding synchronized ground
truth pose

The ground truth for validation of algorithms in mid-range can be generated through
calibrated senor, robot and target as follows:

- transformation of target frame to TCP frame of a robot carrying the target satellite
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transformation of Tcp frame of target robot to TCP frame of servicer robot
transformation of TCP frame of a servicer robot to the sensor (camera, LIDAR) frame

Moreover, a wavefront or a CAD model of the target satellite, which will be post-processed

to suite for a certain data fusion algorithm is required. Inter-sensor transformation is also
required, for fusion of camera data with LIDAR.
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2.2 Detection, Reconstruction and Tracking of a Target

An on-orbit servicing involves rendezvous operations from the location where the servicer
spacecraft is put in-orbit to the resident space object (target spacecraft). The navigation
function requires various maneuvers during approach. The fundamental operations that
enable to achieve the spacecraft navigation to a target include mainly a target detection and
tracking. In order to precisely track the target at a given range of distance, an accurate
geometric model of the spacecraft is essential. In case of inaccurate geometry, it is
necessary to reconstruct the satellite/spacecraft with an aid of navigation sensors.
Particularly, at a very close-range where higher accuracy is required, the reconstruction of
the desired region of interest (e.g grasping region) on the target spacecraft enhances the
performance for an on-orbit servicing during visual servoing.

In this Section, we describe each localization function (DFPC), and provide a general
overview of the DFPC components (DFN). Each scenario is implemented in one or several
use cases. The Use cases are distinguished by the use of different types of sensors or by
different main DFPC structures. Each DFPC structure can in turn be instantiated in various
“flavors” where different combinations of functions with the same type of inputs and
outputs can be used. These variations on a DFPC are described in section 4.1.

The following section will address reference implementations at two levels:

e RI-INFUSE: the consortium level, in which we demonstrate and evaluate the full
capabilities of the CDFF.

e RI-SRC.SR: the SRC Space Robotics level, that demonstrates the CDFF is ready to
be integrated with OG1, OG2, OG4 and OG6.

2.2.1 RI-INFUSE: Detection, Reconstruction and Tracking

The reference implementation in InFuse will be carried out mainly with the DLR OOS-sim.
The objective is to carry out an offline validation of the reference implementation.
Furthermore, an online demonstration can be conducted with selected DFPC. The offline
validation consists in primarily data recording and data exploitation. The evaluation metric
relies on an accurately calibrated test facility used to carry out the validation. The ground
truth obtained from a robot joint encoders and a hand-eye calibration will be used to assess
the performance of reference implementation.

The package diagram in Fig.5 shows an overview of foreseen software and hardware
elements in order to carry out the reference implementation.


https://docs.google.com/document/d/1dzXoeUw53Aa8eO9zmDp28ZrmBW5gFQI8jxTk5CSIpOQ/edit#heading=h.7l4e5ee26ja9
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RI-INFUSE-Detection-Tracking-Reconstructior

CDFF-Support ‘

Data Fusion Processing Chair |

CDFF-Core |

Core algorithms Internal Data

CDFF-Dev

Ground segment | Ground truth

Command| [ Visualization Data logging ER Ao

Sensor Suite ‘

Sensordata acquistior |

Stereo camera | | MU |

Facilitators Testbed ‘

Mission | Simulation |
| Servicer | | Target | | Manipulator Robots-Servis:er/Target
dynamics

Figure 4: Package diagram of the demonstration and validation scenario in orbital track.

2.2.2 Use Case 1: Far-range Target Detection and Tracking

Regarding the validation and demonstration approach for this use case, current discussions
between InFuse and the PSA have brought the conclusion that, on the one hand, a full
physical validation of this scenario is not currently possible with our internal hardware
setups, and on the other hand, simulation-based validation would not be representative
enough. Therefore, this use case will still be described, but its implementation will be put on
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standby to increase the emphasis on mid-range operational scenarios which can actually
be performed on the foreseen physical test beds.

Since, at far range, it is only realistic to accurately estimate the target bearing, we focus this
use case on a simple 2D camera. The target, which we assume can possibly have its own
translational and rotational motion, is first detected in the image by dense matching, then
this bearing measurement is fed into a classic filtering function which uses a chaser and
target motion model to ensure a continuous and robust tracking. Additionally, the tracking
filter would benefit from having access to inertial measurements of the chaser, using it
either for a simple state prediction, or as a measurement for state correction. Finally, user
interaction is needed to initialize the system by designating the target to be tracked in an
acquired image.

2.2.2.1 Description

The core data fusion implementation thus requires the following high-level functions:

- Dense image matcher,
- Tracking filter.

Additional ad-hoc functions are also required to integrate a full validation and
demonstration chain:

- Sensor acquisition for the camera and inertial measurements,

- Chaser navigation and locomotion control loops,

- Chaser (and target) position and orientation measurements for ground truth
determination,

- User interfaces for target selection, live monitoring,

- Data logging and replay functions,

- Localisation accuracy evaluation.

2.2.2.2 Algorithm Performance

Since the long range tracking DFPC only operates in bearing to guide the chaser towards
its target, we expect, from benchmarking and litterature figures, the tracking accuracy of
the center of the target to be in the order of magnitude of 1 pixel on the sensor, which
would be sufficient to allow for further rendezvous operations. Tracking rate is expected to
be sufficiently fast to perform autonomous navigation at 1Hz. Another measure of success
is the guarantee that tracking can be successful over the whole approach trajectory.

2.2.3 Use Case 2 : Mid-range 3D Model Detection and Tracking

This use case focuses on localisation with regards a model of the target which combines
visual features and geometric primitives, such as a CAD model. At close range, the
combination of a 2D camera and a radar or lidar sensor is able to detect and track visual
features on the target body. To greatly enhance tracking performance and robustness, the
algorithm can consider a user-provided 3D geometry (made of simple geometric primitives
such as planes and cylinders) into its rigid-body motion model. However, the filter still
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requires an initialisation step. In order to reduce operator intervention, we propose to
perform initialisation with a target detection function. The detector uses an offline-trained
template of the target and RGB-D measurements to provide a coarse first estimate of its
pose to the tracking function.

In the context of this implementation, with the considered EGSE, using a radar sensor may
not be feasible, however radar measurements could easily be simulated from lidar
measurements of ground truth data.

The core data fusion implementation thus requires the following high-level functions:

Model-based target detector,
Visual feature detector and matcher,
Model-based 3D tracking filter.

Additional ad-hoc functions are also required to integrate a full validation and
demonstration chain:

Template training tools based on simulated or real image data,

Tools for model geometry definition and file generation,

Sensor acquisition for the cameras, lidar/radar and inertial measurements,
Chaser and target mockups navigation and control loops,

Chaser and target pose measurements for ground truth determination,
User interfaces for target selection, live monitoring,

Data logging and replay functions,

Relative localisation accuracy evaluation.

2.2.3.1 Activity Diagram

This use case presented here is described in the following activity diagram, from the point
of view of the user. The diagram helps in highlighting the various agents involved in the use
case, and the sequence of actions necessary to implement the scenario.

1.

2.
3.

The user initialises the OOS-Sim and chooses the required trajectory from the
provided set,

The user loads the model of the target, the sensor calibration files,

Start the rendezvous/tracking process to execute the pre-planned trajectory:

a. Cameraimages, LIDAR/Radar and IMU are acquired at a predefined rate,

b. The detection DFPC is run on the current RGB-D data,

c. If detection was successful, the visual tracking DFPC is initialised, and starts
to use the image stream as input to estimate a relative pose between the
servicer and client cartesian frames,

d. The user can monitor the status and the execution, visualise data, and
receive estimated pose,

e. Execution is stopped as soon as the client has reached its target pose, or if
the trajectory has reached its final point.
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Figure 5: Use Case 2 Mid-range 3D Model Detection and Tracking

2.2.3.2 Algorithm Performance

The detection subfunction of this DFPC, performs detection of a known object and only a
coarse first estimation of its relative pose. Successful detection of the object is determined
by verifying that the estimated pose falls within a given tolerance of ground truth. The final
pose estimation accuracy is then only dependent on the spatial resolution of the trained
template (i.e. the number of discrete angular and linear camera positions used to perform
the training). The higher the number of vertices in the training, the better the accuracy, but
with the cost of a longer computation time.

Performance figures available in the litterature mirror results obtained by benchmarks
carried out during the tradeoff analysis phase. In [HINTERST2012], detection is performed
on a selection of objects with a template trained with a spatial sampling of 15 degrees in
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rotation and 10 cm in scale. In these conditions, the target is successfully detected, on
average, between 83% and 93% of the time, with an average rate of 8Hz on a desktop
computer.

Our benchmarks in simulation indicate similar performance, but the spatial sampling of the
training will need to be refined, as the size and range of the target is around an order of
magnitude larger, further impacting the pose estimation accuracy.

Concerning the tracking subfunction, from tests and preliminary benchmarks performed
during the tradeoff analysis, we expect the tracking accuracy to be affected mostly by
scene conditions (e.g. lighting, background), target geometry, and the approach trajectory.
As a comparison baseline, the following accuracy intervals, with variations due to the
environment conditions, have been obtained with simulated rendezvous sequences
(1024x1024 camera resolution, focal length 35mm):

Table 3: Mid-range 3D Model Tracking Expected Accuracy Figures

Range (m) Position RMS Error (m) Angle RMS Error (deg)
10 0.01 t0 0.05 0.01 to 0.02
25 0.1t0 0.5 0.02 to 0.05
50 3.5t06 0.5to0 1

[HINTERST2012] Hinterstoisser, Stefan, et al. "Model based training, detection and pose
estimation of texture-less 3d objects in heavily cluttered scenes." Asian conference on
computer vision. Springer, Berlin, Heidelberg, 2012.

2.2.4 Use Case 3: Mid to Close-range LIDAR-based Tracking of a Target

This use case focuses on a simple implementation of a LiDAR-backed model-based
localisation scheme. In this case, the target model consists of a reconstructed point cloud
with a density high enough to allow for subsampling. We propose to perform a dense
matching and rigid-body optimization between the acquired point cloud and the
user-provided model. To enable a continuous tracking, pose filtering with a motion model is
also included.

The core data fusion implementation thus requires the following high-level functions:

- Point cloud matcher,
- 3D pose filter.

Additional ad-hoc functions are also required to integrate a full validation and
demonstration chain:

- Sensor acquisition for the LiDAR and inertial measurements,
- Tools for target point cloud model reconstruction,
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Chaser navigation and locomotion control loops.This refers to the simulated GNC
(quidance, navigation and control) loops found on the chaser satellite, which control
its dynamic behaviour in rendezvous maneuvers. In this case, these functions will be
covered by the OOS-Sim equipment.

Chaser and target pose measurement for ground truth determination,

User interfaces for target selection, live monitoring,

Data logging and replay functions,

Localisation accuracy evaluation.

Some challenges about this approach are foreseen, namely the issue of potentially large
resolution differences between the model and acquired point clouds.

2.2.4.1 Activity Diagram

This use case presented here is described in the following activity diagram, from the point
of view of the user. The diagram helps in highlighting the various agents involved in the use
case, and the sequence of actions necessary to implement the scenario.

1.

2.
3.

The user initialises the O0OS-Sim and chooses the required trajectory from the
provided set,

The user loads the model of the target, the sensor calibration files,

Starts the rendezvous/tracking process to execute the pre-planned trajectory:

a. LiDAR and IMU are acquired at a predefined rate,

b. The point cloud tracking DFPC is initialised, and starts to uses the LiDAR
stream as input to estimate a relative pose between the servicer and client
cartesian frames,

c. The user can monitor the status and the execution, visualise data, and
receive estimated pose,

d. Execution is stopped as soon as the client has reached its target pose, or if
the trajectory has reached its final point.
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Figure 6: Lidar-based Tracking of a Target Activity Diagram

2.2.4.2 Algorithm Performance

Since this is a similar, yet simplified implementation of the Mid- and Close- Range, 3D
reconstruction and object detection DFPC (Use Case 5) working with a complete, dense
point cloud, we expect a lower general accuracy and robustness, but a possible increase in
execution rate. We can thus expect euclidean distance to be below 5% of R, where R is the
maximum operational distance of the camera, and a final angular distance to be below 10°.

2.2.4.3 Use of Point Cloud Data from Other Sources

Although LIDAR provides a means by which to obtain point clouds directly, other methods
are possible - specifically the use of stereo vision and visual reconstruction (see section
2.2.6). InFuse is a modular system, and therefore allows point cloud generation from
different sources to be used in the same algorithms. Therefore, it is possible for LIDAR
point clouds to be used for 3D model-based target tracking as described in 2.2.6 by
modification of the DFPCs used.
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2.2.5 Use Case 4: Mid- and Close-range Visual Tracking of a Target and
Estimation of Robot Relative State

In this use case, we focus on a camera-based pose estimation of a target satellite provided
an ordered image sequence in respective timestamp. We assume a non-cooperative target,
where neither vision-aiding markers nor GN&C on-board sensors on the target spacecraft
are accessible for exploitation. Thus, the pose tracking relies on calibrated camera images
and a geometric model of the target. It is assumed that the geometric model of the target
can be obtained either from a spacecraft manufacturer’s CAD model or reconstruction and
modeling techniques.

The pose estimation provides the 3D position and orientation between two cartesian
coordinate frames located on the servicer frame or TCP of a robotic manipulator, and on
the target or a chosen grasping point on the target spacecraft. In order to perform the pose
tracking, we employ image sequences, resulting from the relative motion of the servicer and
client satellites using two cameras in stereo configuration. The algorithm will rather exploit
each camera image independently and fuse the data to compute the pose. This two
monocamera fusion has an advantage particularly in space application; in case one camera
fails due to unexpected radiation, the tracking can proceed with the remaining monocular
camera. Notice that two camera configuration may be used in case a higher accuracy is
required at close range, otherwise a monocular camera can be used to reduce
computational burden. The monocular camera with a priori knowledge of the geometric
model of the target can be used to estimate the absolute position and orientation.

The visual tracking in 6 DOF relies on a local optimization, hence it requires an external
initialization as well as re-initialization in case of a loss of tracking. The external initialization
could be achieved by a global 3D detection method, e.g from a DFPC described in Use
case 2. Furthermore, the visual tracking and detection DFPCs must have a synchronized
sensor data in order to perform detection-tracking procedure robustly. In fact, there may
exist certain delays because of the intensive computation of the global detector compared
to the local tracker which is much faster. If the detector is based on sensor data other than
the tracker camera, a relative pose of the sensors must be pre-determined through
calibration procedure. The workflow of the visual tracker and the detector is illustrated in
Fig.8. Notice that, the detector is inactive during tracking and is activated on demand such
as when re-initialization is required. This sleep-mode is used to efficiently utilize resources
(memory, processor and power).
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Figure 8: The workflow of the integrated visual tracker and detector DFPCs.

We remark that the same visual tracking method is used both for mid- and close-range,
with an appropriately selected camera and lense system according to range.

2.2.5.1 Description

Hereafter we describe the tracking procedure and processing flow.

Preparation (offline):

e 3D model pre-processing of the target geometry
e (Calibration of stereo cameras and camera - TOF sensors (if any)
e A robot TCP- sensor calibration, aka hand-eye calibration

The tracking procedure follows

1. The user determines mode of tracking (mid-range or close-range), based on the
appropriate distance to the target and respective camera-lense specification. If the
mode of the operation is close-range, the user should define the desired grasping
point of the client (goal point).

2. The user loads the model of the target, the calibration file and a pre-planned or
reference trajectory.

3. Start the rendezvous/tracking process to execute the the pre-planned trajectory:

a.
b.

C.

Camera image is acquired at a predefined rate

The visual tracker waits until the initialization takes place by the detection
DFPC

The visual tracking DFPC uses the image stream as input to estimate a
relative pose between the servicer and client cartesian frames

The user can monitor the status and the execution, and receive estimated
pose

The visual tracking is stopped and the process finishes as soon as the client
is out of field of view of the servicer or at a predetermined distance to the
target.

2.2.5.2 Activity Diagram

Here we describe the functional aspects of the visual tracking. It is basically a model-based
edge tracking, following the classical contour matching method yet a state of the art
technique. The activity diagram in Fig.9 shows a stereo camera based pose tracking
procedure and interface to external DFPC.
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Figure 7: Activity diagram of edge-based pose tracking

2.2.5.3 Algorithm Performance

The performance of the algorithm is measured according to the accuracy with respect to
range and robustness to space lighting. With regard to lighting, two boundary conditions
are considered where the lighting is very poor hence the target is under illuminated, and the
space lighting is highly directional to a reflective surface, leading to over illuminated target.
In this lighting condition, the camera-based tracking algorithm is expected to provide
inaccurate and unreliable pose estimate. The bottom line here is, that a vision-based
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algorithm could be reliably used only in appropriate lighting condition with distinctive visible
image features on the target. However, with support of target dynamics identification, a
long-term prediction can be performed to improve the visual tracking performance in case
of worst lighting condition. Identification of a target dynamics is currently not in the scope
of InFuse.

Moreover, the performance of a visual tracking depends on a structure of the target, hence
it may not be feasible to specify its performance boundaries without knowing the target. An
accuracy of 30 mm at close- range and 5% error at mid-range is achieved for a typical
satellite, with solar panel, adapter rings and launcher bracket interface

2.2.6 Use Case 5: Mid- and Close- Range, 3D Reconstruction and object
detection

The localization approaches described above assume that the object geometric model
exists as in the form of CAD model or by 3d reconstruction. Below, we describe the latter
as a use case of the orbital implementation. The 3D Reconstruction and tracking DFPC
family is useable within close range (0-2m) and mid range (2-17m) subject to appropriate
sensor capabilities (sufficient separation of stereo cameras and illumination range on
LIDAR/ToF devices). This use case is split into two DFPCs due to complexity of
implementation. The 3D reconstruction DFPC performs environment reconstruction from
camera images - in most cases stereo images as per the InFuse sensor suite, but with
some degradation of performance monocular images could be used - and also active
devices such as LIDAR and Time-of-Flight (ToF) cameras that produce point clouds
directly. Different flavors of DFPC are designed to perform reconstruction from these
different sources using common DFNs. The 3D tracking DFPC operates on the scene point
clouds that are produced from the reconstruction process to identify instances of a
pre-defined model within the scene.

2.2.6.1 Description

To allow a tracker spacecraft to identify and estimate the movement of a target spacecraft,
four options are possible according to the sensors available: 3D reconstruction from a 3D
Lidar or ToF camera, 3D Reconstruction from a stereo camera, 3D Reconstruction from a
mono-camera, 3D reconstruction from mono camera and 3D Lidar and ToF camera. In the
first case we obtain a point cloud directly from the sensors, in the second and third case,
the point cloud is computed by detection of 2d features, matching and 3d triangulation of
the correspondences. By projecting the keypoints into three dimensions, we build up a
point cloud of the target, which can then be matched in shape to a point cloud model, and
the pose of the model accurately obtained by three-dimensional keypoint correspondences.

The operation of 3D reconstruction proceeds as follows:

1. Parameters must be set for the sensors used, resolution, and sensor type (mono
camera, stereo camera or TOF/LIDAR point cloud)

2. For the case of identifying a target shape, a point cloud model must be pre-stored
or loaded into the system with known resolution and parameters
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3. The sensor calibration must be available

a.

b.

C.

When using cameras, the camera parameters (frustum parameters, focal
length etc.) must be known.

When using a stereo camera, the camera baseline must be know in addition
to the above parameters.

For using ToF cameras or LIDAR, the scaling and range of data must be
known

4. Images are read in from the 2D visual camera(s) or point clouds from ToF cameras
or LIDAR.
5. If the mono camera is used:

a.
b.
c.

features are extracted from the images;

Features from an image are matched with a suitable past image;

The correspondences are used for the computation of a camera matrix and
estimation of the camera transform between the two images;

A 3d triangulation step allow to project the features correspondence in 3d
space, and obtain a point cloud.

The sequence of pose estimates from one image to a past image allows the
computation of the current pose of the camera with respect to the initial
pose.

6. If the stereo camera is used:

a.
b.
C.
d.

e.

A disparity map is computed and it is used for the construction of a 3d point
cloud;

Features are extracted from both left and right images;

Features from the left image are matched with a suitable past left image;

The correspondences are used for the computation of a camera matrix and
estimation of the camera transform between the two images;

The sequence of pose estimates from one image to a past image allows the
computation of the current pose of the camera with respect to the initial
pose.

7. If a ToF Camera or 3D Lidar is used:

Qoo

o

A point cloud is already available directly from the sensor;

3d features are extracted from the point clouds;

Features from the points cloud are matched with a suitable past point cloud;
The correspondences are used to compute a transform between the two
point cloud;

The sequence of transform estimates from one point cloud to a past point
cloud allows the computation of the current pose of the sensor with respect
to the initial pose.

8. If we use mono camera and a ToF Camera or 3D Lidar then:

a.
b.
C.

A point cloud is already available directly from the sensor;

Features from an image are matched with a suitable past image;

The correspondences are used for the computation of a camera matrix and
estimation of the camera transform between the two images;

. The sequence of pose estimates from one image to a past image allows the

computation of the current pose of the camera with respect to the initial
pose.
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9. The point cloud must be scaled, potentially filtered for outliers, and the resolution
established.

10. The point cloud is merged with the reconstructed 3d environment in the position
defined by the estimated sensor pose;

11. Features are extracted from the point cloud and the object model;

12. Features are matched and a transform from model to scene is estimated.

To perform tracking, the following process is used, and will be done in a separate DFPC
due to the clear separation of processes once a point cloud is produced.

The operation of model-based tracking proceeds as follows:

18. The point cloud is culled if there is a significant resolution difference between the
resolution of model and scene clouds

14. The scene is matched with the model using 3D descriptors to determine instances
of the model within the scene.

15. The process is repeated with new sensor data. Successive matches will indicate the
motion of the model within the scene

2.2.6.2 Activity Diagram

In Figure 8 we show a diagram of the complete 3D reconstruction and tracking process.
On the left side of the picture, we are using a mono camera and a LIDAR sensor for 3D
reconstruction. On the right side of the picture, an instance of a model within the point
cloud can be tracked by identifying 3D correspondences. Again, the 3D reconstruction
process (up until “Solve PnP for Poses” on left) is done in a separate DFPC from the 3D
tracking process (following Scene Point Cloud” on right).
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Figure 8: Activity Diagram of 3D Reconstruction and Tracking

2.2.6.3 Algorithm Details

Due to the complexity and the number of algorithms used in the 3D Reconstruction and 3D
tracking DFPCs, a more detailed description of how the algorithms work is provided as
follows.

2.2.6.3.1 Feature Matching

We use ORB (Oriented FAST and Rotated BRIEF) point descriptors for 2-D feature
matching. First, a method of keypoint detection must be used to obtain keypoints from a
sequence of images. The FAST keypoint detector (Features from Accelerated Segment
Test) is frequently used for keypoint detection due to its speed, and is used for quickly
eliminating unsuitable matches in ORB. Starting with an image patch p of size 31x31, each
pixel is compared with a Bresenham circle centred on that point (built 45 degrees at a time
by ). The radius of the surrounding circle of points is nominally 3, but is 9 for the ORB
descriptor, which expands the patch size and number of points in the descriptor. If at least
75% of the pixels in the circle are contiguous and more than some threshold value above or
below the pixel value, a feature is considered to be present. The ORB algorithm introduces
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an orientation measure to FAST by computing corner orientation by intensity centroid,
defined as

mOO 00

m, my,
| = Ul - q
C= - where m. Expy 1(x,).

¥ v

(1)

The patch orientation can then be found by . Since the FAST detector does not produce
multi-scale features, a Harris filtered scale pyramid is used to compare several scales of
features.

2.2.6.3.2 ORB Keypoint Description

The feature descriptor provided by BRIEF is a bit string result of binary intensity tests T,
each of which is defined from the intensity p(a) of a point at a relative to the intensity p(b) at
a point at b:

1:p(a)<P(b)}
tp;a,b)= { 0:nla)>nlh)

and

flp= > 2 (psa,b).

(3)

BRIEF descriptors can be referred to as BRIEF-k, where k is the number of bytes needed to
store the descriptor. The descriptor is very sensitive to noise, so Gaussian smoothing is
applied to the image patch that the descriptor acts on. The more smoothing, the more
matches can be obtained. Also, the basic BRIEF descriptor falls in accuracy quickly with
rotations of more than approximately 10 degrees. To make BRIEF invariant to in-plane
rotation, it is steered according to the orientations computed for the FAST keypoints. The
feature set of points (a,b) in 2xn matrix form is rotated by multiplication by the rotation
matrix R, corresponding to the patch orientation © to obtain the rotated set F:
o (al... an)

b b,

4)

The steered BRIEF operator used in ORB then becomes:
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,(p,0)f, (p)V(a,b)EF

A lookup table of steered BRIEF patterns is constructed from this to speed up computation
of steered descriptors in subsequent points.

2.2.6.3.3 Matching Process

The first step is to match the keypoints with descriptors generated by BRIEF between two
images taken from slightly different positions, attempting to find a corresponding keypoint
a’ in the second image that matches each point a in the first image. Brute-force matching of
all combinations of points is the simplest method which generally involves an XOR
operation between each descriptor and a population count to obtain the Hamming
distance. This is an O(N? algorithm, and takes relatively long to complete. However, The
FLANN (Fast Library for Approximate Nearest Neighbor) search algorithm built into OpenCV
is used in current work.

2.2.6.3.4 The Fundamental Matrix

To obtain depth in a 3-D scene, an initial baseline for 3-D projection is first required, which
for the case of monocular images requires the calculation of the Fundamental Matrix F,
which is a the general 3x4 transformation matrix that maps each point in a first image to
another second image. It is generally preferable to use stereoscopic vision for point cloud
reconstruction because the baseline can be obtained with two cameras a known distance
apart at each location. As a result, the fundamental matrix is constant and can be
calculated relatively easily. For monocular vision, the fundamental matrix must be estimated
using homographies. The set of “good” matches M, is used to obtain the fundamental
matrix for the given scene. The fundamental matrix is the matrix F that maps every point on
the first image to its corresponding location in the second image, based on the assumption
of linear geometry between two viewpoints. Consequently, each keypoint a, in the first
image will map to a corresponding keypoint a’ on the epipolar line (the line of intersection at
a’ of the second image plane with the camera baseline) in the second image by the relation

ai'TFa’,=0, i=1,..,n.
©)

For three-dimensional space, the matrix F has nine unknown coefficients and Equation 6 is
linear and homogeneous, so F can be uniquely solved for by using eight keypoints with the
method of Longuet-Higgins. However, image noise and distortion inevitably cause variation
in points that make it difficult to obtain a single “correct” F for all points. Therefore, for
practical calculations, a linear estimation method such as linear least squares or RANSAC
must be used. RANSAC (RANdom SAmple Consensus) is an efficient algorithm designed
for robust model fitting that can handle large numbers of outliers, and is commonly used
with OpenCV and other algorithms. We use RANSAC for its speed to estimate F for all
matches and estimate the associated epipolar lines. Outliers (defined as being keypoints
more than the tolerance 0.1 from the estimated epipolar line) are then removed from M, to
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yield a final, reliable set of keypoint matches M,. If no keypoint matches remain by this
point, then there are too few features in common between the two images and no
triangulation can be created.

2.2.6.3.5 The Essential Matrix

To perform a three-dimensional triangulation of points from two-dimensional feature planes
and a transformation F between them, it is necessary to take into account any
transformations and projective ambiguity caused by the cameras themselves. A camera
matrix is defined as C=K]|R]|t], being composed of the calibration matrix K, the rotation
matrix R and the translation vector t. We also need to locate the position of the second
camera C2 in real space with respect to the first camera C1. The cameras can be
individually calibrated using a known pattern such as a checkerboard, but fairly good
results have been achieved by estimating the camera calibration matrix as

s0w/2
K=| 0sw/2|
no 1

(7)

For real-world point localization, we can use the so-called essential matrix that relates two
matching normalized points “x and “x' in the camera plane as:

éi'Teai=o, i=1,..,n.
8)

In this way, E includes the “essential” assumption of calibrated and is related to the
fundamental matrix by E

2.2.6.3.6 Orientation

After calculating E, we can find the location of the second camera C2 by assuming for
simplicity that the first camera is uncalibrated and located at the origin (C1=[l|0]). We
decompose E=txR into its component R and t matrices by using the singular value
decomposition of E. We start with the orthogonal matrix W and its transpose , where

(0-10}
w=|100
001
©)

and the singular value decomposition of E is defined as
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100
SVD(E)=U | 010 \v.
000

The matrix W does not directly depend on E, but provides a means of factorization for E.
There are two possible factorizations of R, namely R=UW'V' and R=UWV', and two
possible choices for t, namely t=U(0,0,1)" and t=-U(0,0,1)". Thus when determining the
second camera matrix C2=K][R|t], we have four choices in total.

(10)

2.2.6.3.7 Triangulation

Given the essential matrix E, and a pair of matched keypoints, it is now possible to
triangulate the original point positions in three dimensions using least-squares estimation.
The algorithm described by Hartley and Sturm for iterative linear least-squares triangulation
of a set of points is used as it is affine-invariant and performs quite well without excessive
computation time. A point in three dimensions x when written in the matrix equation form
Ax=0 results in four linear nonhomogeneous equations in four unknowns for an appropriate
choice of . To solve this, singular value decomposition can again be used, or the method of
pseudo-inverses. An alternate method is to simply write the system as Ax=B, with A and B
defined as

axCI % 0—C1 0:0 aXC1 2 1—C1 o1 aXCIZ; 2—C1
ayCl 2 0—C1 1,0 ayCl 2 1—C1 11 ayCl 2 2—C1

0;2

1;2

A=
beZZ;O—CZO;o bxczz;l-czo;1 bXCZZ;Z—CZO;2
be2, € ,bLC2 -C2 bQ2, -2,
(11)
and
—axC12;3—C10’_3
. —ayClz;a—Cllr_3
-bXCZ 2 3-(':20’_3
-bC2, -C2, ..

(12)

Solution of the resulting system of equations (in this case, using singular value
decomposition) yields x, which can be transformed into undistorted “real” coordinates by
x=KC1x. This assumes that the point is neither at 0 nor at infinity, so very distant points
may have to be removed before this process. Because solutions are possible for either
direction of the translation vector t between the cameras, or for a rotation of 1t radians
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about the vector t, so this triangulation must be performed four times, once for each
possible combination of R and t, and each resulting point set checked to verify it lies in
front of the camera. We use a simple perspective transformation using C1 and a test to
ensure x,>0. Triangulation produces a point cloud in local (camera) coordinates with points

P

2.2.6.3.8 Pose Estimation

The last step is to find the object pose from the 3D-2D point correspondences and
consequently the egomotion of the camera relative to the feature points, commonly known
as the Perspective & Point (PnP) problem. Bundle adjustment can also be performed to
optimize the point cloud after triangulation, but works best on a large number of points and
images for, while we are focused on relatively fast triangulation over a few frames. For this,
we apply the OpenCV implementation of the EPnP algorithm. Four control points denoted
as are used to identify the world coordinate system of the given reference point cloud with
n points p,...p,, chosen so that one is located at the centroid of the point cloud and the rest
are oriented to form a basis with the principal directions of the data. Each reference point is
described in world coordinates as a normalized, weighted sum of the control points with
weightings a;. As this coordinate system is consistent across linear transforms, they have
the same weighted sum in the camera coordinate system, effectively creating a separate
basis

Zaul P, Zaul’za =1
(13)

The known two-dimensional projections of the reference points can be linked to these
weightings with the camera calibration matrix K considering that the projection involves
scalar projective parameters as

,:w,( ) KZaul
(14)

The expansion of this equation has 12 unknown control points and n projective parameters.
Two linear equations can be obtained for each reference point, and concatenated together
to form a system of the form Mx=0, where the null space or kernel of the matrix gives the
solution x to the system of equations, which can be expressed as
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m
x= z By,
i-1 (1 5)

where the set is composed of the null eigenvectors of the product corresponding to m null
singular values of M. The method of solving for the coefficients 3 depends on the size of m.
Given perfect data from at least six reference points, m should be 1, but in practice, m can
vary from 1 to 4 depending on the camera parameters, reference point locations with
respect to the basis, and noise. Hence, four different methods are used in the literature
[Error! Reference source not found.] for practical solution, but the methods are complex and
not summarized here.

2.2.6.3.9 Object Pose Estimation

A set of three-dimensional keypoints are chosen from both the scene and the model by
picking individual points from the cloud separated by a given sampling radius. Normals are
calculated for these keypoints relative to nearby points so that each keypoint has a
repeatable orientation. The keypoints are then associated with three-dimensional SHOT
(Signature of Histograms of OrienTations) descriptors. SHOT descriptors are calculated by
grouping together a set of local histograms over the volumes about the keypoint, where this
volume is divided into by angle into 32 spatial bins. Point counts from the local histograms
are binned as a cosine function of the angle between the point normal within the
corresponding part of the structure and the feature point normal. This has the beneficial
effects of creating a general rotational invariance since angles are relative to local normals,
accumulating points into different bins as a result of small differences in relative directions,
and creating a coarse partitioning that can be calculated fast with small cardinality. This
method generalizes to the descriptor

D(p)= [ U WSH;j(p)
i=1
(20)
which can also be used for color texture descriptions.

Comparing the scene keypoint descriptors with the model keypoint descriptors to find good
correspondence matches is done using a FLANN search on a k-dimensional tree (k-d tree)
structure, similarly to the matching of image keypoints. Additionally, the BOrder Aware
Repeatable Directions algorithm for local reference frame estimation (BOARD) is used to
calculate local reference frames for each three-dimensional SHOT descriptor to make them
independent of global coordinates for rotation and translation invariance.
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Once a set of nearest correspondences and local reference frames is found, clustering of
correspondences is performed by pre-computed Hough voting to make recognition of
shapes more robust to partial occlusion and clutter.

Evidence of a particular pose and instance of the model in the scene is initialized before
voting by obtaining the vector between a unique reference point C and each model feature
point F and transforming it into local coordinates by the transformation matrix R, = [LMLX,
L, LM,Z]T from the local x-y-z reference frame unit vectors LY, L™ , and L" . This
precomputation can be done offline for the model in advance and is performed by

calculating for each feature a vector

Vi,L [LJX'L:y"er] (CM F )
21)

For online pose estimation, Hough voting is performed by each scene feature F°, that has
been found by FLANN matching to correspond with a model feature F™, casting a vote for
the position of the reference point CV in the scene. The transformation RVS_ that makes
these points line up can then be transformed into global coordinates with the scene
reference frame unit vectors, scene reference point FSj and scene feature vector V°, as

IG [;x' Jy,l_ ]VL+F

(22)

The votes cast by V° ; are thresholded to find the most likely instance of the model in the
scene, although muItlpIe peaks in the Hough space are fairly common and can indicate
multiple possibilities for model instances. Due to the statistical nature of Hough voting, it is
possible to recognize partially-occluded or noisy model instances, though accuracy may be
lower.

2.2.6.4 Algorithm Performance

In the case a single mono camera is used, the performance of this algorithm has been
tested on a simulation of tracking a CubeSat. Four different tests were performed in the
laboratory on image sequences produced from robotic movement of a camera in
equidistant arcs about a 1U CubeSat engineering model. The SHOT descriptor radius and
cluster size parameters were varied to test the relationship of these variables to the
resulting matches. Similar performance is expected from the stereo camera reconstruction
as a similar set of DFNs is used. The reconstruction process is faster using LIDAR and ToF
camera hardware as it does not require initial feature detection, matching, selection, and
triangulation steps.

Test Number Number of Number of [ Number of | Descriptor | Cluster
Number | of Images | scene features | keypoints | matches Radius (m) | Size (m)
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1 220 5584 167 63 0.05 0.1
2 220 5584 632 594 0.1 0.5
3 32 1816 7 28 0.05 0.1
4 32 1816 7 70 0.1 0.5

Table 6: Parameters for 3D Reconstruction and Tracking Tests

The process of reconstruction and tracking was profiled running on the ARM core of a Xilinx
Zynq Z7020 SoC microcontroller (667MHz ARM-Cortex A9). Table 7 shows the timing
results for each part of the 3D reconstruction process, and Table 8 shows the timing results
(in seconds) for the 3D model-based identification and tracking process'. It can be seen
from this that the majority of time is spent on keypoint production and FLANN search during
the tracking process.

Test Feature Feature Feature Fundamental Essential Triangu- PnP Ego-M TOTAL
Detection Matching Selection = Matrix Matrix lation RANSAC otion (s)

1-2 0.12 0.058 0.015 0.083 0.0017 0.038 0.0033 0.0005 0.32

3-4 1 0.12 0.061 0.010 0.048 0.0014 0.025 0.0026 0.0004 0.27
Table 7: Timing Results for CubeSat 3D reconstruction from image sequences

Test Model Scene Modell Scene. Modell Scene. FLANN Clustering TOTAL
Normals Normals Sampling Sampling Keypoints Keypoints @ Search (s)

1 0.17 0.15 0.027 0.020 1.26 0.84 107.7 0.92 112.1

2 0.17 0.15 0.029 0.024 3.37 2.19 118.0 2.00 127.2

3 0.17 0.043 0.031 0.0083 3.31 0.37 42.5 0.63 48.4

4 0.17 0.041 0.031 0.0078 3.31 0.37 42.6 1.36 491

Table 8: Timing Results for CubeSat 3D model-based tracking

| Model | Scene |
(reference) | (current)

Figure 9: 1U CubeSat model (left) and reconstructed scene (right)

The accuracy of ego-motion estimation (effectively the tracking of the relative position of
the target) during the tracking process was additionally profiled using another test using a
3U CubeSat engineering model, shown in Figure 10. Figure 11 shows plots of the pose

" M.A. Post, J. Li, C. Clark, X. Yan. “Visual Pose Estimation System for Autonomous Rendezvous of
Spacecraft”. ESA Astra 2015: 13th Symposium on Advanced Space Technologies in Robotics and
Automation. ESA/ESTEC, Noordwijk, the Netherlands, 11-13 May 2015.
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estimation accuracy in translation and Figure 12 in rotation. The total RMS error in
translation was 7mm in X, 8mm in Y, and 7mm in Z. The total RMS error in rotation was
0.14rad about X, 0.11rad about Y, and 0.19rad about Z.

Figure 9: 3U CubeSat model (left) and match with scene (right)
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Figure 11: Tracking accuracy of 3U CubeSat model in translation
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Figure 12: Tracking accuracy of 3U CubeSat model in rotation

This tracking accuracy is considered to be accurate within the close range (0-2m) scenario.
Accuracy is expected to scale approximately linearly with distance, and can be expressed
as a percentage of the distance to target R. For the close-range scenario presented here,
positional accuracy is within 1% of R. For the mid-range scenario (2-17m), positional
accuracy is expected to remain 1% of R.

Some initial estimates of pose estimation accuracy under partial occlusion of a 3U CubeSat
target were also performed. Shadowing the target by 25% resulted in an additional ~1%
error in translation and ~2% error in rotation, shadowing the target by 50% resulted in an
additional ~7% error in translation and 3% error in rotation, and with 75% shadowing no
correspondence with the model was found.

From the testing results given, initial parameters for the DFPC are suggested as follows:

e Descriptor Radius and Cluster Size should be a fraction (1%-10%) of the size of the
object to be detected

e Descriptor Radius and Cluster Size should be the same order of magnitude

e Descriptor radius may be tuned to improve the speed of the descriptor selection

e Cluster size may be tuned to increase the speed of the matching process
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e The model point density should be no more than one order of magnitude different
from the scene point density (subsampling is possible)

2.2.7 Use Case 6: 3D reconstruction and mapping with Haptic Scanning

Haptic Scanning basely consists of taking benefit of information dealing with contacts
established between a robotic manipulator and a target. In the orbital scenarios of InFuse,
haptic scanning is identified as an opportunistic strategy to collect information about the
environment: it is not foreseen to carry out dedicated haptic scanning actions or series of
actions (e.g. following a certain pattern of scanning along a structure), but rather to make
use of information available while manipulation actions are being carried out, for other
purposes. The assumption is that, when a contact takes place between the manipulator and
a target, a force is measured and is available as a piece of information. We propose to
collect and integrate such contact information into a model, that will contain sparse, but
accurate information on target points positioning (through information on encoders /
kinematic chain of the manipulator) and associated force information. Such a model, that
will translate in an augmented mesh (considering force information), may potentially be
fused with other 3D models of the environment.

Besides an opportunistic usage, it could be envisaged to trigger dedicated haptic scanning
actions (i.e. purposely establishing a contact) to disambiguate depth information in certain
locations where other sensors may have been impaired, for various reasons (e.g. visual
cameras may be dazzled by sun or reflect on shiny surface, Lidars may be misled by
transparent or translucent materials, etc.). This capability may not be a fundamental one,
but may occasionally be relevant, at limited cost. Similarly, in case of a failure with a
primary sensor (Lidar, ToF camera, stereo...), pro-active haptic scanning may help ensuring
that a basic (sparse) model of the environment may nevertheless be built - which may be
useful to take decision and plan paths in a degraded mode, from OG2 / ERGO.

Note that we do not intend in InFuse to develop and provide guidance/control/servoing
capability for a manipulator setup: the haptic scanning approach is considered a data
fusion capability, from the InFuse DFPC point of view. Only opportunistic haptic scanning is
therefore encompassed, not pro-active haptic scanning.

The core data fusion implementation thus requires the following high-level functions:

- Mesh data structure allocators :
- allowing to populate for each position an associated normal,
- allowing to query for each 3d point its associated normal if available,
- 3D Distance query functions
- Triangulation based on measured points

Additional ad-hoc functions are also required to integrate a full validation and
demonstration chain:

- Tools for target point cloud model reconstruction and visualisation,
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- End effector force & positions generations

2.2.8 Requirements

The system requirement [RD4] derives the requirements of the reference implementation in
this document. The description of the demonstration and validation scenario of InFuse
extends and solidifies this system requirement. Hence, we follow the requirement described
in Appendix 7.1 to evaluate the implementation.

2.2.9 RI-SRC.SR-Detection, Reconstruction and Tracking

The RI-SRC.SR is a superset of the RI-INFUSE, hence the descriptions tailored to the
RI-INFUSE will be applied for RI-SRC.SR. The further description specific to RI-SRC.SR will
be reported once the interfaces to other OGs are matured.

3 System Modeling

This chapter describes the InFuse system architecture and its EGSE, Facilitators (OG6),
ESROCOS (0OG1) and ERGO (OG2) products.

The objective is to identify all components, interfaces and relationships of the system. The
system is defined as a hardware and software subsystems which allow to implement
scenarios described in chapter 2. Depending on the scenario that will be demonstrated, all
parts of the overall system might not be required.

We start by presenting generic components composing a robotics system, then we list all
components that could be used, and finally we explain how they will be assembled
following a top down approach. As mentioned in previous chapters, the system architecture
corresponding to RI-INFUSE and RI-SRC.SR scenarios are presented in dedicated
sections.

3.1 Satellite and Robotic System

The actors in orbit servicing are servicer satellite, target or client satellite and robotic
manipulator. The servicer and clients are usually reproduced with a respective mock-up
satellite for ground validation and verification purposes. The motion of the satellites are
simulated with industrial robots. We categorize the system as mission and simulation
elements as in Table 3. The mission represents actual hardware systems deployed in space
and the simulation elements define ground simulation which reproduces the behaviour of
the actual space system. In general, the on-orbit servicer and client system are
represented with a robotic system to reproduce the behaviour of the space systems. Here
only kinematic aspects of on-orbit servicing is considered. In fact, the InFuse is concerned
with perception and data processing aspects and will not address the simulation of satellite
dynamics.
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Satellite/Spacecraft Ground Validation Motion
Hardware
Servicer Servicer mock-up Simulate with Industrial
robot
Target Target mock-up Simulate with Industrial
robot
Robotic manipulator Robotic manipulator Robotic manipulator

Table 3: On-orbit servicing simulation

Therefore, the satellite system in the context of on Ground validation in InFuse reduced to a
robotic system. As defined in planetary track D5.2, the robotics system is mainly composed
of robots, sensors, actuators, on-board computers, environments, ground stations,
communication links and software.

robot system: the robot in our case is an industrial manipulator having all actuators,
sensors, controllers, on-board computers and software to reproduce servicer/target
system that can be controlled in speed and direction,

sensor system: it includes all exteroceptive and interoceptive sensors used for
perception and sensing,

actuator system: it include all actuators that are in the robot and required to provide
necessary torque in order generate motion and interact with the world,

computer system: it includes all the processing units,

environment: it includes the representative space environment where the on-orbit
servicing is performed.

ground station system: it is the set of computers that allow the end-user to interact
with the manipulators,

communication link system : it consists of all communications links that required by
ground stations, on-board computers, sensors, actuators, microcontrollers to
communicate,

embedded software system: it is all the necessary softwares to operate on-orbit
servicing. It could be functionally decomposed as detection, tracking and
reconstruction.

3.2 RI-INFUSE

This section describes the InFuse system architecture dedicated to the implementation of
the RI-INFUSE scenarios.

3.2.1 System Components

The Servicer/Target system : is the robot System (shown in Fig. 11), consisting of

servicer
target
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- sensor system
- environment
- platforms such as ground station and on-board system
«ServicerTargetSystems»
ERI-INFUSE
«Servicers «Jarget» «SensorSystem» «Environment»
E 00S-simRobots = 00S-simRobot H Sensors = 00S-simLighting
<Environment» «Platform>» «Platforms
= 00S-simEnvironment = GroundStation = EmbeddedPlatform

Figure 9: On-orbit servicing system consists of servicer and targets as the main
components.

Sensor system: These are main sensors used for on-orbit servicing, including

- stereo cameras
- LIDAR
- MU

- force/torque sensors (for grasping/docking)

Each sensor can be used independently or as a system of sensors (Fig. 12) for sensor
fusion for an on-orbit servicing. Notice that one sensor is preferable to the other depending
on the range of operation between the servicer and client satellites.
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«SensorSystem>»
= Sensars
«CameraSystem>» «CameraSystem» «|IDARSystem>»
E ManipulatorCamera E DockingCamera ELIDAR
«InertialSensorSystem: «ContactSensorSystem» «PositionSensorSystem»
=My = ForceTorqueSensor H JointEncoder

Figure 10: Sensor system for an orbit-servicing.

Software system: The software is a crucial component of the on-orbit servicing robotic
system. The overview of the the software system of the orbital reference implementation is
shown in Fig.13. The sensor system (left) provides raw data in order that the software
system (middle) produces the required measurements such as position and attitude.
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Figure 11: Overview of the Software system of the orbital reference implementation.

In the figure above, The sensor system (left) supplies raw data

in order

the software

system (middle) produces data product (right) which can be communicated to an external

user such as ERGO.

3.2.2 On-orbit Servicing Simulator

Here we provide an example ground simulation system for an on-orbit servicing. The DLR
0OO0S-sim facility is mainly used for close-range operation and equipped with (Fig. 14)

e two industrial robots
e servicing robotic arm
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e Manipulator camera
e Docking camera

e force/torque sensors

B100S-sim

ServicerRobotSystem» «TargetRobotSystem»

«CameraSystem» «CameraSystem» «Force/TorqueSensor
E Servicer E Target

E ManipulatorCamera E DockingCamera E ForceToque

Figure 12: The overview of the main on-orbit servicing ground simulation.

Finally, we provide an example that shows a deployment of the CDFF on the DLR OOS-sim
(see Fig. 15).

DLR

InFuse
0O0S-sim

Ground
OBC

Station

Links & Node CDFF Links & Node| Command &
Support Control
J Computer

| InFuse Wrapper |

O Eth t
ver erne Over Ethernet
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Figure 13: Deployment overview of the InFuse with the DLR OOS-sim. The Links and
Nodes is the DLR robotics middleware used here for inter-process communication.

3.3 RI-SRC.SR

RI-SRC.SR is a subset of RI-INFUSE where less sensors will be available. Any major
difference between the different system architecture will be included in this document. The
detailed interface and workflow of OG3 between 0G4 and OG2 is provided in Appendix 7.3
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4 Detailed Architecture and Design

This chapter presents detailed description of DFPC and associated DFN corresponding to
the use cases provided in chapter 2.

1.1 4.1 DFPC Architecture View

First, we focus on the architecture of the data fusion processing compound/chain (DFPC)
and provide detail design of associated DFNs. Thus, at this level we aspire to identify and
describe

- each DFN used in DFPC,
- DFN internal interfaces,
- internal and external interfaces of DFPcs .

The DFPC description follows the DFPC specification provided in Appendix 7.2. The DFPC
architecture is presented in three parts:

e Data Flow Description: a functional description of the DFNs that compose a DFPC
and their relations, seen only from a data-flow point of view. The goal of this
description is to identify the list of required DFNs to build a DFPC.

e Data Product Management: description of the shared data between the DFNs in the
given DFPC, and the interfaces between this data and the various DFNs.

e Control Description: description of the control flow within a DFPC: the order in which
DFNs are called, DPM access to shared data, synchronicity of time stamped data.
The control flow will be achieved by the Orchestrator for implementation.

The specification, definition and the purpose of the DFPC specification are tabulated in
Table 4.

DFPC description purpose specifies/defines
Data Flow description Provides a layout and -inputs/outputs of DFPC
ordering of different DFNs [ -inputs/outputs of each
DFN
-shared data between DFNs
Data Product management | Manages the CDFF -shared data structures
products such as pose, among DFNs
map, model and features -processing units that query

and insert those data
structures
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Control description Describes flow of processes | -temporal course of the
within DFPC. Temporal execution of a DFPC
execution of a DFPC is
dictated by the orchestrator

Table 4: DFPC Specification: data flow and control description, and data product
management.

The following template is used to describe the implementation detail of each DFPC:

e [List of DFNs used : as described in section 4

e Data structures: data types of the input/output and shared Data structure, relation to
the DPM (as a client, a provider).

e DFPC Parameters : the user of the DFPC will select parameters of algorithm. The
default parameter will be provided. These parameters are set in a configuration file

The list of DFPCs and the partners responsible for developing them are provided in Table 5.
The sections below present the description of each DFPC.

DFPC Partner
Mid-and close-range detection Magellium
LIDAR-based tracking Magellium
Mid-and close-range visual tracking DLR

3D reconstruction USTRATH
Haptic Scanning SPACEAPPS

Table 5: List of DFPCs and responsible partners

The following sections present the implementation details of the DFPC in the context of the
RI-INFUSE. Since the CDFF, as well as ESROCOQOS, are not available and operational yet,
we implement the DFPC using another RCOS and middleware.

Details of INFUSE-RI:

- Middleware, RCOS (GENOM, YARP, ROS),

- DFPC Controller : implementation detail (e.g. GENOM/YARP State Machine),
- Specific data structures,

- Deployment scheme.

- AHPC interfaces : sensor acquisition, display
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4.1.1 DFPC : Far-range Object Tracking

This DFPC responds to the following reference implementation scenarios:

2.2.1 RI-INFUSE-Detection, Reconstruction and Tracking

- 2.2.2 Use Case 1 : Far-range Target Detection and Tracking

It is used to provide a relatively simple bearing-only relative localisation of the target asset
when its distance with regard to the chaser is too great to allow for a full pose estimation.
Localisation is performed through tracking, in an RGB camera input, of a visual feature
previously initialized by the user.

DFPC Inputs:

RGB image with associated metadata,
Chaser attitude from AHRS,
Radar range.

DFPC Outputs:

Estimated target bearing and range.

The DFPC will be composed of the following DFNs:

User Interface: Provides a way for the user to see the input images and initialize the
position of the target by selecting a ROl within them,

EKF Prediction: Performs a prediction of the expected position of the target feature
in the image using a chaser and target motion model and the current image
timestamp,

ZNCC Matching: Matches the saved target feature ROl within the new acquired
image,

EKF Correction: Uses the results of the matching DFN as an observation to update
the filter and compute an estimation of the relative pose of the target with regard to
the chaser. This is the DFN which provides the final pose output of the DFPC.

Some architecture choices have been made for this DFPC:

The ZNCC matcher optimizes a homography to represent feature ROI position in the
input images,

The features are represented by a ROl image, a homography with regard to its
source image, and the camera pose of the source image,

The EKF prediction is separated from the correction in order to support the case
where images are not acquired at a constant frequency. It thus needs a timestamp
input. It returns a predicted homography with regard to the current image,
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- We currently propose to use AHRS data in the EKF correction step. However, in a
different implementation, it could be used to perform EKF prediction,

The following figures detail the DFN component structure inside the DFPC, the shared data

structures, and its DFN calling sequence.
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out featurePosition: Transform’ |
out updatedROI: Image
out matchScore: double |

\ Feature Matching: ZNCC Correlation

Motion Estimation: EKF Correction

—plin featurePosition: Transform®
in featureCamPose: Pose®

in chaserPose: Pose

| ~>-nradarRange: Range

| :
out targetBearing: Pose_..}

out featureROl: Image’
out feat. position: Transform’

out ChaserPose: Posé.

<<DFN>>
Radar : Radar Range

out RadarRange: R

Figure 16: Long-range Tracking Data Flow Description.
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<<DATA - Shared>>
Image & tracking states

Feature
ROI

<<QUERIER>> <<QUERIER>>
ROIFeatureQuerier EKFStateVectorQuerier

in featurelndex: intf] in statelndex: int[]

out featurePositions:Transform(] out EKFStates: StateVector|
out cameraPoses: Pose][]
out featureROI: Imagel[]

Y Y
<<QUERIER>> <<QUERIER>>
getFeature: ROIFeatureQuerier

getStates: EKFStateVectorQuerier

in featurelndex: int[]

in statelndex: int[]

1. Select indexes in past features
2. Return features position information:
2.a. Feature Transform wrt to its
image
2.b. Associated camera pose

1. Select indexes current state vector
2. Return references to elements

out featurePositions:Transform[] out EKFStates: StateVector
out cameraPoses: Pose[]

Figure 17: Long-range Tracking Data Product Management.
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Figure 18: Long-range Tracking Control Description

4.1.2 DFPC : Mid- and Close-range Target Detection

This DFPC responds to the following reference implementation scenarios:

- 2.2 2 Detection, Reconstruction and Tracking of a target
- 2.2.3 Use Case 2 : Mid-range 3D Model Detection and Tracking

The processing compound attempts to detect a known target within its input stereo image
pair and, if successful, returns a coarse estimated relative pose. The detection process is
based on the LINEMOD template detection algorithm, which requires a 3D CAD model of
the target. A training step is first performed offline with the model, and the resulting
template is then loaded by the detection DFN. The template consists in a large database of
the object’s most discriminant features in various modalities, including gradients and
surface normals, from all possible point of views. Each input image is then efficiently
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compared to the template, and the function signals a successful detection if the computed
similarity exceeds a given threshold.

As this is only a detection DFPC, we do not include any long term tracking nodes such as a
filter, but instead this DFPC could be used in conjunction with Mid-range 3D Model
Tracking as a pose initialization step.

DFPC Inputs :

- Left and right stereo images with associated metadata.
DFPC Outputs:

- Estimated chaser pose with regard to target.
The DFPC will be composed of the following DFNs:

- Stereo Rectification: Performs a rectification of both cameras in the bench using
their calibration parameters,

- OpenCV Stereo Correlation: Computes, refines and filters a disparity map from the
left and right rectified images. Computes the associated depth map,

- LINEMOD Template Detection: Loads the target template and performs a detection
using an input RGB image and its depth map. This DFN provides the final DFPC
estimated target pose signalling a successful detection.

The following figure details the DFN component structure inside the DFPC.

DFPC: Mid-range 3D Model Detection (OT Version) }
<<DFN>> <<DFN>> <<DFN>>
Stereo Rectification Stereo Correlation Template Detection
in leftimage: Image in leftimage: Image in modelTemplate: Template* T
lin rightimage: Image in rightimage: Image in pointCloud: PointCloud out targetPose: Pose
) in image: Image
‘ in leftimage: Image out leftimageRectified: Image out pointCloud: PointCloud
out rightimageRectified: Image out targetPose Posei
‘ in rightimage: Image 1
<<DATA - Shared>>
Template data
Model
emplal
R e e i <<DFN>> <<DFN>> <<DFN>>
mera : : OpenCVRectification:Stereo OpenCVStereo: Stereo LINEMOD: Template Detection
Rectification Correlation
in modelTemplate: Template*
in leftimage: Image in leftimage: Image »{in image: Image

out image: I

in rightimage: Image /m rightimage: Image in pointCloud: PointCloud
out leftimageRectified: Image/ out pointCloud: Poin|C|oud/ out targetPose: Posg—————————— 3
out rightimageRectified: Image:

Figure 19: Mid-range 3D Model Detection Data Flow Description.
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<<DATA - Shared>>
Template Data

Template
Model

<<QUERIER>>
TemplateModelQuerier

out targetTemplate: Template

A 4
<<QUERIER>>
getTemplate: TemplateModelQuerier

1. Return reference to template model

out targetTemplate: Template

Figure 20: Mid-range 3D Model Detection Data Product Management
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Figure 21: Mid-range 3D Model Detection Control Description

4.1.3 DFPC : Mid- and Close-range Target Tracking

This DFPC responds to the following reference implementation scenario:

- 2.2.1 RI-INFUSE-Detection, Reconstruction and Tracking

- 2.2.3 Use Case 2 : Mid-range 3D Model Detection and Tracking

This DFPC is activated once the chaser is close enough for the camera to resolve geometric
features on the target. It is based on the existing VISP Model-based Tracker library, which
is able to track a known 3D target using two types of features (and their combination):
edges and corners, and KLT keypoints. The tracking function is thus adapted for textured
or untextured objects, with visible edges or not. In this implementation, we attempt to
augment the camera input with a radar range measurement, which will be used to add
robustness to the tracking DFN.

The target needs to be described with an input CAD model file in order to specify its
geometric primitives. It also already includes its own sub functions such as keypoint
extraction, edge visibility computation, and real-time tracking filter, therefore the DFPC is
quite simple, as it is composed of self-contained DFNs.

DFPC Inputs:

- RGB image with associated metadata,

- Radar range.
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DFPC Outputs:

- Estimated relative chaser pose with respect to target.

The DFPC will be composed of the following DFNs:

- User interface - Pose Initialization: Displays input images, and provides an interface
for the user to (optionally) click to initialize the target pose,

- VISP Template Tracking: A self-contained DFN which implements the full tracking
chain, with keypoint extraction and matching, edge visibility computation, and pose
estimation. This DFN provides the final DFPC pose output.

The following figures detail the DFN component structure inside the DFPC.

DFPC: Mid-range 3D Model Tracking (OT Version) )

[ porameters T

<<DFN>> <<DFN>> 3
Pose Initialization Template Tracking

in image: Image in pose init: Pose
in image: Image
out feat. position: Pose]

in image: Image out targetPose: Pose out targetPose: Pose
in range: Range

<<DATA - Shared>>

<<DFN>>
Left Camera : RGB
<<DFN>> <<DFN>>
User Interface: Pose Initialization VISPModelBasedTracking:
. TemplateTracking
outimage: I

<»in image: Image

in image: Image
out targetInitPose: P in pose init: Pose

<<DFN>> in radar range: Range
Radar: Range
out targetPose: P
out range: R:

Figure 22: Mid-range 3D Model Tracking Data Flow Description
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<<DATA - Shared>>

<<QUERIER>>

<<QUERIER>>

Figure 23: Mid-range 3D Model Tracking Data Product Management
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Figure 24: Mid-range 3D Model Tracking Control Description
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4.1.4 DFPC: LIDAR-based Tracking of a Target

This DFPC responds to the following implementation scenarios:

- 2.2.1 RI-INFUSE-Detection, Reconstruction and Tracking
- 2.2.5 Use Case 4: LIDAR-based tracking of a target

The general goal of this DFPC is to perform a robust tracking of a known target described
by a point cloud, either obtained through LiDAR sensors, stereo cameras or ToF cameras.
The method requires that a sufficiently dense point cloud model of the target is provided in
advance by the user.

We propose a naive implementation of point cloud tracking built around an EKF with a
simple motion model. The measurements are provided to the filter by performing a dense
ICP matching step between the input point cloud and the provided model. The target model
is a high density point cloud created offline from a 3D model, or from prior 3D
reconstruction. The ICP algorithm is aided by an initial prediction of the target pose, and the
EKF correction step is enhanced by measurements coming from the chaser’s AHRS sensor.

For a detailed description of the EKF DFN reused in this DFPC, refer to section 4.1.5.
DFPC Inputs:

- Chaser attitude from AHRS,
- Point cloud with associated metadata from LiDAR sensor or stereo camera or ToF
camera. The point cloud density can vary, depending on the input sensor used.

DFPC Outputs:
- Estimated chaser pose with respect to target.
The DFPC is composed of the following DFNs:

- ICP Point Cloud Registration: Using an initial pose estimation, applies an ICP
algorithm to determine the transform that minimizes the distance (euclidean or other)
between 2 input point clouds,

- EKF Prediction: Performs a prediction of the expected position of the target point
cloud using the chaser and target motion models and the current image timestamp,

- EKF Correction: Uses the results of the ICP matching DFN as an observation to
update the filter and compute an estimation of the relative pose of the target point
cloud with respect to the chaser. This is the DFN which provides the final pose
output of the DFPC.

Some specific architecture choices have been made when defining this DFPC:
- The EKF prediction is separated from the correction in order to support the case

where images are not acquired at a constant frequency. It thus needs a timestamp
input.
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We currently propose to use AHRS data in the EKF correction step. However, in a
different implementation, it could be used to perform EKF prediction.

DFPC: Point Cloud Model-based Localization (OT Version) )

<<DFN>> ‘ <<DFN>>

<<DFN>>
EKF Prediction Point Cloud Registration

EKF Correction
in EKFStates: StateVector* in posePrediction: Pose lin EKFStates: StateVector*
in LidarPointCloud: PointClo fin pointCloudTime: Timestamp in sensorPointCloud: PointCloud lin measuredPose: Pose

out targetPose: Pose
in modelPointCloud: PointCloud* fin inertialPose: Pose

'in Chaserlnertial Pose: Pose .
J out posePrediction: Post

out targetPose: Pose| out targetPose Pose

<<DATA - Shared>>
Point Cloud Model & States

parameters/data AN
Target PC EKF
Madel States

<<DFN>>
Motion Estimation: EKF Prediction

<<DFN>> <<DFN>> ‘
<<DFN>: ICP: Point Cloud Registration Motion Estimation: EKF Correction|
§S0A%; tewnciond in EKFStates: StateVector*
in pointCloudTime: Timestamp

—>n posePrediction: Pose

in measuredPose: Pose
{in modelPointCloud: PaintCloud* in inertialPose: Pose

outLPG: PGy out posePrediction: Post

in EKFStates: StateVector*
in sensorPointCloud: PointCloud

out targetPose: Pos

<<DFN>>
AHRS : Inertial Pose

out targetPose Posj_?—>

out inertialPose: P

Figure 25: ICP Point Cloud Matching Data Flow Description
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<<DATA - Shared>>
Point Cloud Model

<<QUERIER>>
<<QUERIER>> .
TarguetPCQuerier EKFStateVectorQuerier
in pointcloudindex: int[] in statelndex: int[]
out targetPG: PointCloud[] out EKFStates: StateVecto
3 y
<<QUERIER>> <<QUERIER>>
TarguetPCQuerier:

getStates: EKFStateVectorQuerier

in pointcloudindex: int[] in statelndex: int[]

1. Select indgxes in past pointcloud 1. Select indexes current state vector
2. Return pointcloud 2. Return references to elements

out targetPC: PointCloud[] out EKFStates: StateVecto

Figure 26: ICP Point Cloud Matching Data Product Management
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Figure 27: ICP Point Cloud Matching Control Description
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4.1.5 DFPC : Mid- and Close-range Visual Tracking of a Target

This DFPC relates to the use case described in

- 2.2.1 RI-INFUSE-Detection, Reconstruction and Tracking

- 2.2.6 Use Case 5: Visual Tracking of a Target and Estimation of Robot
Relative State

DFPC Inputs :

- [Stream] Stereo images with associated metadata

- [Data Product] Valid initial guess of the target pose,
- [Parameter] Model file similar to wavefront format,

- [Parameter] Tracker parameters,

- [Parameter] Calibration parameters

DFPC Outputs:

- [Stream] Estimated pose
- [Stream] Estimated local velocity

The DFPC will be composed of the following DFNs (Fig. 28):

- Image undistortion

- Edge detection for an an edge based tracking,

- Kalman prediction for capturing frame-to-frame local motion

- Kalman correction for updating the prediction with measurement
- Visibility determination

- Contour sampling

- Matching model and image edges

- Pose estimation
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DFPC: Model-based Visual Tracking)

<<DFN>>
Edge Detection

<<DFN>>
EKF Prediction

<<DFN>>
EKF Correction

in imagel : Image
inimageR: Image

out edgeMapL: Image
out edgeMapR: Image

inimageTime: TimeStamp
in Image

in imageTime: TimeStamp
in Image

outedgeMapL: Image
outedgeMapR: Image

out edgeMapL: Image
out edgeMapR: Image

inimageL: Image
I
inimageL: Image

ininitialPose: Pose
|

in initialVelocity: Velocity

out estimatedPose; Pose & Velocity

<<DFN>>
Image Undistortion

inimagel: Image
inimageR: Image

out undistortedimageL: Imag
out undistortedimageR: Ima

<<DFN>>
Visibility Determination

<<DFN>>
Contour Sampling

in pose: Pose
in 3DModel: Points

in visibleModel: Points

out visibleModel: Points out samplePoints: Pointg

Contour Matching/Pose Estimation

<<DFN>>

in edgeMaps: Points
in sampledContours: Points

out pose: Pose

Figure 14: The DFN of the model-based visual tracking.

The following figure details the interaction of DFN components inside the DFPC. Notice
that the objects in the sequence diagram: model, m_contour, m_kalman and mainTracker
correspond to visibility determination, contour matching, EKF DFN respectively.
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Figure 15: Sequence diagram of the model-based visual tracker.
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The camera-based pose tracking is described by its DFNs (Table 6), DFPC parameters
(Table 7), inputs and outputs. Moreover, the input and output data types are defined to
enable interface to a Sensor Suite and data product consumer such as ERGO.

List of DFNs

Data Fusion Node (DFN) function

Edge detection extracts image edges

Kalman filtering Predicts the state based on a motion
model and updates with measurement

Image undistortion Corrects image pixels distorted due to
camera lens

Visibility determination Computes the visible model features from
the current camera view

Contour sampling Samples points along the visible contours

Contour matching and pose estimation Estimates pose by aligning image edges to
sampled contours iteratively

Table 6: Data Fusion Nodes of the model-based visual tracking DFPC

The Kalman filter tracks 12-DOF system states which contains the target pose (6-DOF)
and frame-to frame local velocity (6-DOF). Here we assume a constant velocity motion
model, i.e the frame to frame relative motion of the camera and the target is constant. The
filter inputs: process noise, measurement noise and initial covariance are tracker
parameters and have to be provided by the user. Moreover, the Kalman filter requires initial
states which could be provided by an external means such a detection DFPC. After
reasonable initialization, the filtering rate is obviously higher than actual image processing
time. Hence, the filter latency with low dimensional state vector is not our concern in this
particular case where computational burden is highly related to the image-based pose
estimation.

DFPC Parameters: There exist two types of parameters which should be specified before
the DFPC is deployed: tracker and camera parameters. The tracker and camera parameters
are related to the DFN and internal parameters, and camera properties respectively.

Parameter Parameter type

Max number of sample points Tracker parameter

Min distance between a polygon plane and | Tracker parameter
the camera center [mm]
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Subsampling factor while collecting visible
pixels [1=take all, ....]

Tracker parameter

Minimum length of a valid 3D segment
[mm]

Tracker parameter

Search distance [pixel integer]

Tracker parameter

Canny Thresholds

Tracker parameter

Angular threshold for matching edges [deg]

Tracker parameter

Maximum LSE iteration

Tracker parameter

Minimum incremental update to declare
convergence [deg, mm]

Tracker parameter

Maximum update parameters with respect
to initial prediction to declare
divergence[deg, mm]

Tracker parameter

Threshold on percentage of inlier matches

Tracker parameter

Minimum parameters wrt the last Visibility
Line Determination (VLD) to call for new
VLD [deg, mm]

Tracker parameter

Kalman filter process noise

Tracker parameter

Kalman filter measurement noise

Tracker parameter

Kalman filter initial covariance

Tracker parameter

Table 7: DFPC Parameters of t

he model-based visual tracking

Parameter

Parameter type

Number of cameras

Camera parameter

Resolution of camera [pixel]

Camera parameter

Minimum and Maximum depth [mm]

Camera parameter

Projection matrix

Camera parameter

Distortion parameters

Camera parameter

World-to-camera transformation

Camera parameter
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Table 8: Camera parameters for the model-based visual tracking DFPC

Input and output data description: The data types are described according to ESROCOS
ASN.1 in section 5.2 Datatypes. Here, we provide the data types specific to the DFPC,
model-based visual tracking.

Input data Data type description Meta-data Data type (ASN.1)
image Gray images from one or | Frame-mode-t mode-grayscale
two cameras Frame-size-t width T-UInt8

height T-UInt8

time Time [s] of image Time microseconds
acquisition T-Int64,
usecPerSec
T-Int32

Table 9: Input data type description for visual tracking DFPC

Where T-Ulntx are ASN.1 INTEGER defined in ESROCOS.

Output data Description Meta-data Data type (ASN.1)

position Position in x ,y and vector3d
z-direction

orientation attitude AngleAxisd

Velocity Translational vector3d

velocity in local
coordinate frame x,y
and z

Angular velocity Rotational velocity vector3d
in local coordinate
frame x,y and z

status Success/failure in T-Int8
pose estimation
possibly with
failure/error code

Table 10: Output data type description for visual tracking DFPC

Where vector3d:= SEQUENCE(SIZE(1..3)) OF REAL and
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AngleAxisd:=SEQUENCE(SIZE(1..4)) OF REAL as defined in ESROCOS.

4.1.6 DFPC: 3D Reconstruction

The 3D Reconstruction DFPC is specifically for reconstruction of a scene point cloud based
on motion of the target (structure-from-motion), which can supplement or replace a point
cloud obtained by LIDAR.

DFPC Inputs :

- [Stream] Left and Right stereo images with associated metadata
- [Parameter] Camera calibration matrix
- [Parameter] Additional optional parameters

DFPC Outputs:

- [Stream] Ego-motion estimation from PnP for the camera/tracker
- [Stream] Scene point cloud as reconstructed over time from motion

The DFPC will be composed of the following DFNs, with various flavor options available in
each:

- Feature detection: for identifying features in the scene
- Feature matching: for correlating features between images
o Stereo correlation or separate for monocular use
- Fundamental matrix calculation: for finding the homography between images
- Triangulation of features: to locate features in 3D space
- Perspective-and-Point (PnP) solution: to find the ego-motion of the camera

Fig.30 details the interaction of DFN components inside the DFPC. The parameters that
can be set for this DFPC include the following:

camera calibration parameters

maximum number of features

feature scaling

edge threshold

patch size

first feature level (in the case of ORB descriptors)
number of feature levels (in the case of ORB descriptors)
WTA K value (in the case of ORB descriptors)



Reference : D5.1

/f \‘ Version : 2.0.0

} Date : 30-01-2018

Sr Page : 74
D5.1: ORBITAL RI AND ASSOCIATED EGSE DETAILED DESIGN

3D Reconstruction
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Figure 30: Sequence diagram of the 3D reconstruction DFPC.

4.1.7 DFPC: 3D Tracking

The 3D tracking DFPC is for locating an instance of a model point cloud within a scene
point cloud obtained from the 3D reconstruction DFPC or from LIDAR. This DFPC is
separate as it is not needed for target reconstruction, only for identification and tracking
tasks that could be potentially done by other DFPCs.

DFPC Inputs :

[Data Product] Scene point cloud from reconstruction
[Data Product] Model point cloud file (PCD, PLY, A3D).
[Data Product] Valid initial guess of the target pose,
[Parameter] Additional optional parameters

DFPC Outputs:

- [Stream] Estimated pose in reference frame of target
- [Stream] Estimated orientation and matching of target with respect to model

The DFPC will be composed of the following DFNs, with various flavor options available in
each:

- Point cloud descriptor extraction: to find keypoints in scene and model point clouds
o Point normal + SHOT feature descriptors,

- Descriptor matching: to match descriptors between scene and model
o FLANN descriptor matcher

- Correspondence grouping: to find correspondences between scene and model
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o Hough voting or ICP
- Pose estimation calculation
o Extended Kalman filter

Figure 31 shows the sequence diagram for tracking objects in a scene point cloud that has
been reconstructed by visual or LIDAR means. The parameters that can be set for this

DFPC include the following:

e Clustering algorithm to use
e Model uniform sampling radius
e Scene uniform sampling radius
e Reference frame radius
e 3D Descriptor radius
e Cluster size
3D Tracking
PointCloudAssembler DescriptorExtractor file:Model DescriptorMatcher Correspondence TargetEstimator
Scena Clowd &
' Madel Cloud |
Keypoint Extraction Scane —
‘——
Keypaint Exiraction Modal P |
Descriphor N
1 Lyl
SHOT| \
| Matchas 1
| L4l
Hough Woting -
—)
Highes! Comespondence
Fose Estimation ol
| | ‘—J
PointCloudAssembler DescriptorExtractor file:Model DescriptorMatcher Correspondence TargetEstimator

Figure 31: Sequence diagram of the model-based 3D point cloud tracker

4.1.8 DFPC : Haptic scanning

This DFPC responds to the following reference implementation scenarios

- Use Case 6: 3D reconstruction and mapping with Haptic

This DFPC will support the scanning of objects by using a force measuring sensor. This
DFPC is intended to be used on close range applications, and will complement 3D imagery
devices. The detection process is based on a force profile algorithm coupled with

odometry.

For this DFPC, a robotic arm with 7 degrees of freedom is foreseen to be used.
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The detection process will only gather data without requiring arm to be actuated.
DFPC Inputs :

- End-effector position
- End-effector force measurements
- Estimated chaser pose relative to target.

DFPC Outputs:
- 3D point cloud with normal forces embedded describing
The DFPC will be composed of the following DFNs:
- Octomap generator : Will merge force normals data into a spatial representation
- Force Mesh Generator : Will exploit the octomap data to generate meshes

representing touched objects.

4.1.8 DFPC Expected Performance

The target platform is a standard computer made of :
CPU : Intel Core i7-6700HQ @ 2.60GHz
RAM : 16GB DDR4 - 15-15-15

From these hypothesis the expected run time are :

DFN Input type Single thread - | Single thread - CPU
Memory in MB time in ms
Force Mesh Generator |cartesian Pose <1 <1
TOTAL 1 >1000fps
RI-SRC.SR

INFUSE-SRC RI is a superset of INFUSE-RI, hence further details of interface using
ESROCOS middleware with CDFF will be described during the development.

4.2 DFN

Here we present the detailed design of each data fusion node (DFN) identified in the
DFPCs. A DFN is an atomic processing entity that fulfills a given basic function. It is the
smallest unit of a complex task defined by its function, input and output. However, a DFN
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can be defined by a combination of elementary functions which may not expose their
input/output. A DFN exhibits at least two control interfaces:

e configure() and
e process()

The configure() sets all the configuration parameters of the DFN while the process() function
calls library functions to compute the outputs of the DFN.

4.2.1 DFN Template

This section of the document is adapted from the document [RD8] as the core DFN design
is shared by the planetary and orbital track. This DFN template will be used as a guideline
to design each components of DFPC.

4.2.1.1 DFN Description

We start by describing the common DFN elements.

DFN element Remarks

Generic description

Input(s) and Ouput(s) data Data here refers to:

e Actual data (e.g. Image16bit)

e Metadata (e.g. CameraParameters, Timestamp)
and are data structures necessary for the DFN to
function properly.

Input Parameters Can be provided by:
e Configuration file (e.g. Threshold, Size of patch)
e Output of another DFN (e.g. KF reinitialization)

Table 11: DFN template elements for interfacing

The DFN template elements related to implementation detail are listed in Table 12.

DFN element Remark

Performance and cost | A cost/performance estimation method which is common
estimation methods to all DFI of this DFN.

Diagnostic capacities Includes:

e FErrors/warnings at runtime (e.g. unexpected data
type, out-of-range parameter...).

e Log capabilities (e.g. try/catch results written in a
log file)

e Output reports (e.g. “if the image is all back...”)
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Fault Detection and Identification is the responsibility of
the DFN. However its Recovery (when possible) is made at
the DFPC level and is part of the Orchestrator.

Unit test This must be provided with the code, along with the
dataset used for validation.

Table 12: DFN template elements at implementation level

4.2.1.2 DFI: Template Implementation

This template applies to any DFI. As a DFN can have multiple DFls, there can be several
instances of this template under the same DFN.

DFI Name TemplateNamelmplementationi
DFI element Remark
Est. performance and cost Possibly represented, in an adequate cost/performance

space. This information should make it possible to define a
performance measure and a cost measure for a resulting
DFPC.

External library dependencies | List of external library dependencies (e.g Opencv, PCL)

Input Parameters DFl-specific input parameters. For example:
e Feature thresholds,

e Descriptor length,

[ ]

Diagnostic capacities Includes:

e FErrors/warnings at runtime (e.g. unexpected

datatype, out-of-range parameter...).

e Log capabilities (e.g. try/catch results written in a

log file)

e Output reports (e.g. “if the image is all back...”)
Fault Detection and Identification is the responsibility of
the DFN. However its Recovery (when possible) is made at
the DFPC level and is part of the Orchestrator.

4.2.1.3 DFN Description File

The DFN description file is a human readable artifact that describes the DFN based on the
DFN template. A code generator produces C++ code and corresponding python bindings
from the DFN description file.

An example YAML description file following the CDFF-Support specification is provided in
Table 13.
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File: LaserFilterDFN.yml

name: LaserFilter
input_ports:
- name: scanSamples
type: base::samples::LaseScan
doc: samples of a laser scan
- name: laser2BodyTf
type: base::samples::RigidBodyState
doc: laser to body transformation
output_ports:
- name: filteredScans
type: base::samples::LaserScan
doc: filtered laser scans

Table 13: Template description file for setters and getters of LaserFilter DFN

4.2.1.4 DFN Sequence Diagram

What happens inside the configure() and process() calls of this DFN.

4.2.2 DFN Detailed Design

The next section describes the detail implementation of specific DFNs which can be used in
certain DFPC presented above. The DFN elements and description are provided for each
data fusion node below.

4.2.2.1 DFN: Image Geometric Processing

DFN Name Image Geometric Processing

DFN element Remark

Generic description Corrects the distorted image geometrically
Input(s) and Ouput(s) data Input: gray scale image (type, cv::Mat)

Output: gray image (type, cv::Mat)

Input Parameters Camera parameter matrix, distortion coefficients

Performance and cost | N/A
estimation methods

4.2.2.1.1 DFIl: Image Undistortion
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DFI Name Image Undistortion
DFI element Remark

Est. performance and cost N/A

Input Parameters None

External library dependencies | OpenCV

Diagnostic capacities N/A

Unit test

4.2.2.2 DFN: Edge Detection

This DFN consists of the functions: Sobel filter, Scharr operator and Canny detector.

DFN Name

Edge detection

DFN element

Remark

Generic description

Extracts image edges using a given detector

Input(s) and Ouput(s) data

Input: image (type, cv::Mat)
Output: edge map (type, cv::Mat)

Input Parameters

None

Performance and cost

estimation methods

Detection time can be used to estimate the cost of any
edge extractor. For some instances, performance
evaluation methods may exist.

4.2.2.2.1 DFI: Canny Edge Detector

DFI Name

SIFT Feature Extractor

DFI element

Remark

Est. performance and cost

Input Parameters

Upper and lower thresholds, aperture size

External library dependencies

OpenCV

Diagnostic capacities

TBD
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Unit test

4.2.2.3 DFN: Estimation Filter

DFN Name Estimation Filter
DFN element Remark
Generic description Predicts the state based on a state motion model and

corrects it with a measurement

Input(s) and Ouput(s) data Input: current state, motion model, measurement,
measurement model
Output: predicted and updated state

Input Parameters Process noise, measurement noise, initial covariance

Performance and cost | Error w.r.t. ground truth.
estimation methods

Unit test

4.2.2.3.1 DFI: Extended Kalman Filter

The Kalman filter consists of the functions: init for initialization, predict and correct for
update of the predicted state with the measurement.

DFI Name Extended Kalman Filter

DFI element Remark

Est. performance and cost

Input Parameters None

External library dependencies | OpenCV

Diagnostic capacities TBD
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4.2.2.4 DFN: FeatAndSigExtractor

DFN Name

FeatAndSigExtractor

DFN element

Remarks

Generic description

Detects and extract a visual point feature from an image.
The feature is represented by a detector choosing
keypoints of interest in the image and by an array of
descriptors describing the region around the keypoint.

Input(s) and Ouput(s) data

Input: A grayscale image (e.g. cv::Mat)
Output: A vector of keypoints (e.g. cv::Keypoint) and an
array of descriptors (e.g. cv::Mat) for each keypoint

Input Parameters

Number of maximum desired features.

Performance and cost

estimation methods

Detection time can be used to estimate the cost of any
feature extractor. For some instances, performance
evaluation methods may exist.

Unit test

Comparison with known feature list in image

4.2.2.4.1 DFI: ORB Feature Extractor

DFI Name

ORB Feature Extractor

DFI element

Remark

Est. performance and cost

Relatively fast compared to SIFT/SURF but slower for
large image sizes

Input Parameters

Pyramid decimation ratio (scale factor)

Edge threshold

Number of points to produce for BRIEF

Patch size used by BRIEF

Number of pyramid levels (in case of ORB descriptor)
number of feature levels (in the case of ORB descriptors)
WTA K value (in the case of ORB descriptors)

External library dependencies

OpenCV

Diagnostic capacities

N/A
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4.2.2.5 DFN: Feature Matching

DFN Name

Feature Matching

DFN element

Remarks

Generic description

Given two sets of visual point features returns a set
matches. Each match associate two features.

Input(s) and Ouput(s) data

Input: Two vectors of keypoints and their relative
descriptors
Output: A vector of matches (e.g. cv::DMatch)

Input Parameters

Distance threshold to accept matches.

Performance and cost

estimation methods

Matching time. Percentage of outliers in the matches.

Unit test

Comparison with known matches in two images

4.2.2.5.1 DFI: FLANN Matcher

DFI Name

FLANN Matcher

DFI element

Remark

Est. performance and cost

Main alternative to a brute force matcher. Best choice in
terms of computation time but still high load.

Input Parameters

External library dependencies

OpenCV

Diagnostic capacities

TBD

4.2.2.6 DFN: Fundamental Matrix Calculation

DFN Name

Fundamental Matrix Calculation

DFN element

Remark
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Generic description

This DFN calculates a fundamental matrix given feature
positions and their matches

Input(s) and Ouput(s) data

Input: feature descriptors (type, cv::Mat); Pairings of
features, good triangulations for these features

Output: Fundamental Matrix (type, cv::Mat)

Input Parameters

None

Unit test

Calculate a known matrix from known points

4.2.2.6.1 DFI: Fundamental Matrix Calculator

DFI Name

Fundamental Matrix Calculator

DFI element

Remark

Est. performance and cost

Fast calculation

Input Parameters None
External library dependencies | OpenCV
Diagnostic capacities N/A

4.2.2.7 DFN: Bundle Adjustment

This DFN is optional for use in environment reconstruction

DFN Name

Fundamental Matrix Calculation

DFN element

Remark

Generic description

This DFN optimizes point clouds so that they are a better
match to images

Input(s) and Ouput(s) data

Input: Point cloud, feature descriptors (type, cv::Mat),
pairings of features
Output: Point cloud

Input Parameters

Camera parameter matrix, distortion coefficients

Unit test

N/A
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4.2.2.7.1 DFI: Bundle Adjustment

DFI Name

Bundle Adjustment

DFI element

Remark

Est. performance and cost

High computational load for large point clouds

Input Parameters

None

External library dependencies

Ceres-solver

Diagnostic capacities

N/A

4.2.2.8 DFN: 3D Point Computation

DFN Name

3D Point Computation

DFN element

Remarks

Generic description

Given two sets of visual point features and the calibration
matrix of the camera with which the images were taken
returns a point cloud or more generally a set of 3D points.

Input(s) and Ouput(s) data

Input: Two vectors of keypoints, their pairings and a
calibration matrix

Output: A vector of 3D points (e.g. cv::Point3f) or a point
cloud

Input Parameters

Performance and
estimation methods

cost

Computation Time.

Unit test

Given a dataset check the triangulation of points

4.2.2.8.1 DFI: Linear Triangulation (DLT)

DFI Name

Epipolar geometry

DFI element

Remark
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Est. performance and cost

Fast but dependent on humber of points

Input Parameters None
External library dependencies | OpenCV
Diagnostic capacities N/A

4.2.2.9 DFN: 2D-3D Motion Estimation

DFN Name

2D-3D Motion Estimation

DFN element

Remarks

Generic description

Estimates the self-motion of the camera using RANSAC
given a set of triangulated points and a fundamental
matrix.

Input(s) and Ouput(s) data

Input: a vector of 3D points, a vector of image points, a
camera matrix and an array of distortion coefficients
Output: a rigid transformation (Pose estimation matrix)

Input Parameters

None

Performance and cost

estimation methods

Complexity. Computation Time. Percentage of inliers.

Unit test

Given a dataset check the ego-motion estimate

4.2.2.9.1 DFI: PnP (Perspective from n-Points)

DFI Name

PnP

DFI element

Remark

Est. performance and cost

Dependent from the algorithm parameterisation, fast
overall

Input Parameters

Solving method (e.g. EPNP, lterative, P3P)
Ransac parameters

- Number of iterations

- Reprojection error

- Number of inliers

- Use extrinsic guess (for Iterative method)
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External library dependencies

OpenCV

Diagnostic capacities

Depending of the chosen method. E.g. P3P requires
exactly 4 matches or will return error.

4.2.2.10 DFN: Point Cloud Construction

DFN Name

Point Cloud Construction

DFN element

Remarks

Generic description

This DFN combines a new point cloud with an existing
point cloud by only adding points that have not been
already triangulated

Input(s) and Ouput(s) data

Input: Point cloud, re-projected points, pose estimates
Output: Point cloud

Input Parameters

None

Performance and cost
estimation methods

Computation Time

Unit test

N/A

4.2.2.10.1 DFI: Point Cloud Builder

DFI Name Point Cloud Builder
DFIl element Remark

Est. performance and cost Fast overall

Input Parameters None

External library dependencies | OpenCV

Diagnostic capacities N/A

4.2.2.11 DFN: 3D Keypoint Descriptor Extraction
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DFN Name 3D Keypoint Descriptor Extraction
DFN element Remarks
Generic description This DFN determines keypoints, their normals, and

extracts descriptors for these keypoints

Input(s) and Ouput(s) data

Input: Point cloud
Output: Keypoint descriptors

Input Parameters

Model uniform sampling radius
Scene uniform sampling radius
Reference frame radius

Performance and cost

estimation methods

Computation Time

Unit test

Given a point cloud check keypoints produce

4.2.2.11.1 DFI: SHOT 3D Keyoint Extractor

DFI Name

SHOT 3D Keyoint Extractor

DFI element

Remark

Est. performance and cost

Fast but dependent on size of descriptor radius

Input Parameters

3D Descriptor radius

External library dependencies

OpenCV

Diagnostic capacities

N/A

4.2.2.12 DFN: Correspondence Grouping

DFN Name

Correspondence Grouping

DFN element

Remarks

Generic description

This DFN finds correspondences between two sets of

point clouds

Input(s) and Ouput(s) data

Input:  Keypoint descriptors  for

descriptors for model

scene;

Keypoint
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Output: Corresponding poses of model in scene

Input Parameters

Clustering algorithm to use; Cluster Size

Performance and cost

estimation methods

Computation Time

Unit test

N/A

4.2.2.12.1 DFI: Hough Correspondence Grouping

DFI Name

Hough Correspondence Grouping

DFI element

Remark

Est. performance and cost

Highly computationally intensive depending on cluster size

Input Parameters None
External library dependencies | OpenCV
Diagnostic capacities N/A

4.2.2.13 DFN: Target Pose Estimation

DFN Name

Target Pose Estimation

DFN element

Remarks

Generic description

This DFN determines the most likely pose of the target
given a set of potential poses and a movement filter

Input(s) and Ouput(s) data

Input: Potential poses
Output: Estimated pose of target

Input Parameters

Sensor covariances for pose, model covariances for pose,
previous inputs

Performance and cost

estimation methods

Computation time

Unit test

N/A

4.2.2,13.1 DFI: Target Pose Estimator

DFI Name

Target Pose Estimator
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DFI element

Remark

Est. performance and cost

Moderate loading

Input Parameters None
External library dependencies | OpenCV
Diagnostic capacities N/A

4.2.2.14 DFN: Haptic scanning

DFN Name

Target Pose Estimation

DFN element

Remarks

Generic description

This DFN gathers opportunistically any contact point and
generates an associated mesh (point and normal)

Input(s) and Ouput(s) data

Input: Estimated pose of target

Input: Current Manipulator joint state

Input: Force sensors

Output: Force mesh representing contact points

Input Parameters

Sensor covariances for object detection

Performance and cost
estimation methods

Computation time

Unit test

Given a CAD, generate random collision paths, collision
paths must match generated force mesh

4.3 Data Types

A common data type is defined to facilitate an internal and an external interface among
DFNs, DFPCs and CDFF clients such as the autonomy (OG2) and the Sensor Suite (OG4).
The ESROCOS data types will be used for the communication among OGs, while
intermediate DFNs are free to use other data types.

The table below shows description of each data structure, with asn files name. ASN files
name in bold exist in ESROCOS?.

2 https://github.com/ESROCOS/types-base/tree/master/asn
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Data Name Description ASN file name
Image8UC1 Image with one channel of 8 Image8UC1.asn
bits values.
Image8UC3 Image with three channel of 8 Image8UC3.asn
bits values.
Image32FC1 Image with one channel of 32 Image32FC1.asn
bits values.
Timestamp Time in microsecond. Time.asn
3DPoint 3 points in space (X, v, 2). Point.asn
3DPointCloud Array of 3DPoint. PointCloud.asn
Pose Position and orientation of an Pose.asn
object.
Transform Define a pose transformation. TransformWithCovariance.asn
CalibrationMatrix Define the calibration matrix to | CalibrationMatrix.asn
a camera.

5 Detailed Description of EGSE

This chapter describes the EGSE, which will be used to validate DFPCs presented in
previous chapter.

5.1 Introduction

In chapter 4, we described the detailed architecture and design of the reference
implementations, addressing the CDFF-core data fusion components (DFN) and processing
that leads to data products (DFPC) of the CDFF. The Electrical Ground Support Equipment
(EGSE) is used as a test platform to validate the implementation by providing an orbital
simulation environment. The integrated components of the CDFF such as DFPC, DFN and
related interfaces to orchestrator, Data product manager and middleware will be verified.
The following section describes the hardware and software interfaces of the EGSE.

5.2 EGSE

The Electrical Ground Support Equipment (EGSE) provides a validation and test platform
for the CDFF, particularly for the orbital DFPCs. For this purpose, the DLR OOS-sim facility
shown in Fig. 32 will be used as our major EGSE. Moreover, datasets recorded by the
OG4 Sensor suite at the GMV facility will be used for the validation of mid-range DFPCs.
The main objective of the EGSE is the acquisition of a number of datasets from the facility
in order to validate and test the DFPCs described in CDFF of the orbital track. Hereafter we
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specify and describe the orbital EGSE design based on the document [RD5] provided by
the OG6.

DLR OOS-sim facility: It consists of

- aservicer satellite mock-up

- alightweight robotic manipulator

- atarget satellite mock-up

- an environment and space lighting simulator

DLR OOS-sim Sensors:

- Stereo cameras for close-range approach
- IMU
- LIDAR System

5.2.1 Sensor Specifications

Camera: a pin-hole projective model

- Ethernet Prosilica GC1600H, a 2.0 Megapixel camera , 25 fps @ full
resolution

- Sony ICX274 CCD sensor

- C-Mount lens focal length 6mm

IMU: provides orientation based on measurements of angular velocity and linear
acceleration

- Xsense MTI, RS232 interface

- High update rate (120 Hz), inertial data processing at max 512 Hz
- 360° orientation referenced by gravity and Earth Magnetic Field

- Integrated 3D gyroscopes, accelerometers and magnetometers

- Angular resolution 0.05 deg

- Dynamic accuracy 2 deg RMS

LIDAR: point cloud of a target by measuring time of flight of a short pulse

- Velodyne VL-16

- 16 Channels

- 300,000 Points per Second
- 360° Horizontal FOV

- =+ 15° Vertical FOV

- 100m Range
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The OOS-Sim facility consists of a lightweight robotic manipulator mounted on the
servicer satellite mock-up. A stereo camera system is mounted at the end effector and the
potential LIDAR position is indicated on the servicer.

Possible position of
LIDAR sensor
on chaser

Figure 16: The OOS-sim facility.

5.2.2 Hardware and Software Interface
The hardware interface defines an electrical and a mechanical interface between the OG3
sensors and the DLR OOS-sim facility.

- The electrical and mechanical interface of the stereo camera system is already
implemented.
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- The mechanical interface of the OG3/InFuse LIDAR (TBC) will be designed to
accommodate the sensor on the front surface of the servicer satellite mock-up. The
electrical interface will be specified.

The software interface defines the data interface between the OSS-sim facility, and the
InFuse CDFF and associated sensors. The facility uses an intel desktop linux computer for
acquisition and processing of a sensor data. The interface of the stereo camera to the
facility is already implemented.

5.2.3 Functional Interface

The functional interface is defined by the commanding trajectories and lighting condition.
Commanding trajectories:

- OGS users will be able to choose from the list of representative trajectories and
repeat them at their will from the OBC which controls the facility.

Lighting conditions:
- OG6 provides possible lighting conditions to choose.

5.2.4 Operational Interface

The operational interface consists in commanding the servicer/manipulator from a set of
pre-planned trajectories (trajectory library). The content of the trajectory library will be
further discussed with OG6.
Trajectory library:
- a set of representative trajectories for the chaser satellite, the Light Weight Robot
and the target satellite on the OOS-SIM facility will be made available for taking
measurements with the chosen sensor(s).

Trajectory library viewing:

- The trajectories in the libraries will be viewable in a dedicated simulator.
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6 Conclusion

In this document the detailed design of the orbital reference implementation is presented, in
order to facilitate the software development. Firstly, the demonstration and validation
scenarios are described by identifying various use cases for mid- and close-range
rendezvous. The use cases are mainly concerned with a target object detection,
reconstruction and tracking. They arise also from the fact that the associated method
might exploit a 3D and/or vision senor. One one hand, a point cloud-based pose tracking
exploits a LIDAR data or stereo camera to estimate relative motion between a servicer and
a target satellite. On the other hand, an image-based approach to visual tracking relies on a
monocular or stereo camera. The 3D reconstruction exploits stereo camera or LIDAR for
modeling of the target satellite. An offline data processing recorded from an EGSE will be
used to extensively study the performance of the algorithms. On the other hand, an online
validation will be performed with a selected use cases to verify the integration and real time
behaviour. Secondly, in order to identify and motivate demonstration and validation
scenarios for the reference implementation, we addressed a general target satellite
configuration with respect to rendezvous sensor, space environment and lighting in an
on-orbit servicing scenarios.

The document provides the overall view of the system modeling, consisting of the sensor
system, communication system, software system and actuator system to highlight the
possible integration of the CDFF to other systems and the Electrical Ground Support
Equipment (EGSE). The reference implementations are then described in detail, by defining
the input, output and its function. Moreover, each data fusion processing compound
(DFPC) is decomposed to its low-level function ( DFN). The interaction of each DFN within a
DFPC is illustrated with sequence diagram to show how the smallest blocks could build up
the DFPC to provide data product required by the end user such as autonomy. Moreover,
the decomposition of DFPC helps identify common functions shared among the DFPCs and
internal behaviors. Finally, the consolidated detail design of DFPCs and DFNs are described
in the last chapter of the document. Here, apart from a DFPC and DFN internal as well as
external structures, a detailed interface to an external such as autonomy framework, Sensor
Suite will be exposed through the orchestrator and data product manager. This chapter will
be updated during the development phase.
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7 Appendix

7.1 Requirements

state w.r.t

ID Catego | Title Description Identified Use | Requirement
ry Case in D5.1 | driven by SRC
and specified
in RD4
SR_DFPC_0100 | DFPC | Mid-range Pose Mid- and SR_PerfR_A30
tracking estimation close-range |5
accuracy visual
w.r.t chaser tracking
- <Im LIDAr-based
- <10 tracking
deg
SR_DFPC_0101 | DFPC | Close-rang | Pose Mid- and SR_PerfR_A30
e tracking estimation close-range |6
accuracy visual
w.r.t chaser tracking
- <0.05
m
- <5
deg
SR_DFPC_0102 | DFPC [ Mid-range | Pose SR_PerfR_A30
tracking estimation 7
& update
Close-rang | frequency
e tracking >=0.1Hz
SR_DFPC_0103 | DFPC [ Close-rang | Estimation of SR_PerfR_A20
e tracking robot relative 6
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orbital object

n

DFPC |3D 3D SR_PerfR_A20
SR_DFPC_0104 Reconstruc | Object 3D Reconstructi | 4
tion model on
reconstructio
n
SR_DFPC_0105 | DFPC | Close-rang | Object Mid- and SR_PerfR_A20
e detection | localization in | close-range |2
and robot target
tracking reference detection
frame
SR_DFPC_0106 | DFPC [ Mid-range | Facilitate Mid- and SR_UserR_A1
detection localization close-range 02
and w.r.t target
tracking structured detection
and
unstructured
objects
SR_DFPC_0107 |DFPC |3D Support map (3D SR_UserR_A1
Reconstruc | building, Reconstructi | 03
tion reconstructio | on

7.2 Technical Note on DFN and DFPC Specification

This section provides specification of DFN and DFPC, in order that a DFPC developer
should follow this guideline as a template to realize the reference implementations.

7.2.1 Scope of the Note

This appendix sets out a proposed template for the definition of Data Fusion Nodes (DFN),
and another one for the description of the various Data Fusion Processing Compounds
(DFPC) outlined in D4.1. It sits at a "pre-implementation" description level, the lowest level
before code lines. Its consistency with D4.2 must be improved. It will be become the
introduction of section 4 Detailed Architecture of DFPC in D5.2.


https://drive.google.com/open?id=1E2GTbMvRUVs_HY2LTzM9ryhYQxfOC9NOgge2kdQWwEU
https://drive.google.com/open?id=1GeVU9NwVsm27YkO4rNjKTovqHc7NWmTFPpRHJNzgL_8
https://drive.google.com/open?id=1dzXoeUw53Aa8eO9zmDp28ZrmBW5gFQI8jxTk5CSIpOQ
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7.2.2 Definitions

Data Fusion Nodes (DFN) and Data Fusion Processing Compounds (DFPC) have already
been defined in D4.2 (see e.g. appendix 1 Glossary). Here we give some more details.

7.2.2.1 DFN

Atomicity A Data Fusion Node is an atomic processing entity, in the sense that it fulfills a
single given basic function. It is the smallest brick, for the purpose of the CDFF, into which
we break a more complex processing task. At a conceptual level, a DFN is completely
defined by:

e Its purpose

e The data types of its input(s) and output(s)

Interfaces The only control interfaces exhibited by a DFN are configure and process (e.g.
see file LaserFilterDFN.pdf).

Internal makeup A DFN may be made up of several smaller functions, but these functions
and their output/input are not exposed. For instance, an ImageLineSegmentExtractor DFN is
made up of the sequence ComputelmageGradient, ThresholdimageGradient,
ChainThresholdedGradients, ChainLinearApproximation, but this sequence, which may
include some controls, remains completely internal to the DFN and is not exposed.

7.2.2.2 DFPC

A DFPC always generates at least one data product. It is an organized set (a compound) of
DFNs, with determinate data and control flows controlled by the Orchestrator. It may
additionally maintain an internal data structure, under the responsibility of the Data Product
Manager.


https://drive.google.com/open?id=1GeVU9NwVsm27YkO4rNjKTovqHc7NWmTFPpRHJNzgL_8
https://drive.google.com/drive/folders/0B2f4AImIv45fRUFkeldjdTVtSUE
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Inputs CDFF Data Products
(for 0G2)
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2. Initial data & models l = lfl o~
* Orbiter maps ( ) { ) ()
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e Terramechanics | | ot
: Dynamles Internal data '
structures
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(color identifies the

different DFPCs) associated DFPCs)

Figure 17: A simple schematic view of DFNs and DFPCs.

The figure shows how DFNs can be put together to form DFPCs (two DFPCs on this figure).
A few comments:

A DFPC always links input data to one (or more) data product

The control scheme of a DFPC is not “hard-wired”, in the sense that the sequence of
DFN calls can vary, depending on the context (input parameters of the DFPC,
intermediary results of DFNs). The control is implemented by the Orchestrator.

The interfaces with OG2 have been defined in D4.1 and D4.2, but the associated
data structures still need to be defined

The interfaces with OG4 have been defined in D4.2, they comprise the “acquired
data”. The possible additional inputs (Initial Data and Models) still need to be defined
- note the “knowledge” input are not and will not be explicit, and are actually implicitly
considered in the implementation of the DFNs.

A DFPC may theoretically be made up of a single DFN (although we don't have such
a case in our list of DFPCs)

7.2.3 DFN Template

7.2.3.1 DFN Template Elements

Template element

Remarks

1. Generic description

Not much to say: must be present
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2. Input(s) and Ouput(s) data

Data here means both:

e Actual data (e.g. Image16bit)

e Metadata (e.g. CameraParameters, Timestamp)
A DFN cannot work without these data structures.

3. Input(s) Parameters

Can be provided by:
e Configuration file (e.g. Threshold, Size of patch)
o Output of another DFN (e.g. KF reinitialization)

4. Estimated performance and
cost

This should be represented, if possible, in an adequate
cost/performance space. This information should make it possible
to define a performance measure and a cost measure for a
resulting DFPC.

5. External library dependencies

Straightforward

6. Diagnostic capacities

Includes:
e Errors/warnings at runtime (e.g. unexpected datatype,
out-of-range parameter...).
e Log capabilities (e.g. try/catch results written in a log file)
e Output reports (e.g. “if the image is all back...”)
Fault Detection and Identification is the responsibility of the DFN.
However its Recovery (when possible) is made at the DFPC level
and is part of the Orchestrator.

7. Unit test

This must be provided with the code, along with the dataset used
for validation.

7.2.3.2 Towards a Typology/Taxonomy of DFNs

It may be interesting to categorize DFNs, from both a description/documentation point of
view, and mostly from an implementation point of view. Being entirely defined by their input
and output data types, the DFN categorisation naturally induces a categorisation of data

types.

This categorization is yet to be done, and will lead to an object-oriented implementation of

DFNs.

DFN Characterization

A DFN is characterized by:

e A dictionary of Data Fusion implementations (DFI) fitting the DFN definition

e A cost/performance space representation (if possible) of each implementation,
enabling the use to choose which DFI to use (5.)

e A set of validation tests (Added after implementation) (7.)
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DFI Characterization

There can be different implementations of the same Data Fusion Node (e.g. a Visual Point
Feature extractor DFN can be implemented with Harris Features or SURF - though not a
good example actually, as the output data structure are slightly different). The different
implementations are called Data Fusion Implementations (DFI) and characterize the given
DFN.

Each DFl is characterized by:
e Its input parameters (3.)
e |ts external library dependencies (5.)
e |ts diagnostic capacities (6.)

DFN1 DFN2
In1 » + Defined function
« Inputs/Ouput data Outi H * b
+ DFI dictionary : {DFI1,DFI2} 4)- . —————————————— -
+ Cost/Performance representation ] + !
In2 > « Validation test :
_ / \ DFI2
« Inputs parameters + Inputs parameters
« Qutput reports « Output reports
» External libary dependencies + External libary dependencies
« FDIR + FDIR
» Logging States - Errors + Logging States - Emrors

Figure 18: Example of a possible implementations of a DFN

7.2.4 DFPC Description Template

The specification of a DFPC is split into three main parts:

e Data Flow description: this is a purely functional description of the elementary
processes (the DFNs) that compose a DFPC and their relations, seen only from a
data-flow point of view. The goal of this description is to identify the list of required
DFNs to build a DFPC.

e Data Product Management: this part describes the shared data between the DFNs in
the given DFPC, and the interfaces between this data and the various DFNs: memory
calls, data cropping, etc...


https://www.draw.io/#G0Bz49B4IRnFaZWWdYOGdtbnA0cUk
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The section ends with further considerations about the Data Product Management,
which in particular can handle data in-between DFPCs.

Control description: a pure data-flow description is not operational, and in particular
does not depict the sequence and logic of a DFPC. This section proposes a way to
depict the control flow within a DFPC: order in which DFNs are called, DPM access
to shared data, synchronicity of timestamped data... The control flow will be achieved
by the Orchestrator for implementation.

DFPC data flow description

The DFPC data flow provides a layout and ordering of the different DFNSs. It defines:

Inputs/Outputs of the DFPC

Inputs/Outputs of each DFN

DFN types used

Shared data between DFNs: even though data product management is not

represented, it provides data for DFNs as inputs.

Find below example for LIDAR-PG-SLAM:

nnnnnnnnnnnnnnn

Figure 19: LIDAR-PG-SLAM

In this example, all inputs that are provided by DPM and outputs that are inserted in the
DPM are represented with a * after their name.


https://www.draw.io/#G0Bz49B4IRnFaZZVlWZjRZZFNqd28
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7. 3 Detailed Interface among OGs
setCDFFStat [0G2 ->0G3 ([Synch State Initialize, Success,
e idle, reset, Error, invalid
stop States
getCDFFStat |0G2->0G3 |Synch NULL N/A Runtime
e state or
error
getDFPCStat |0G2->0G3 |Synch Type DEM or Pose [Runtime
us state or
error
getRoverMa |0G2 ->0G3 |Synch List of sensor DEM map or |Map
p sensors, names, error state  |produced
accuracy, expected with
update rate, |accuracy information
resolution, [values, gathered by
area of Hz, sensors on
coverage pixel to cm the rover
coverage, itself at the
in sq. mts last sensing
capture
getFusedRov [0G2 -> 0OG3 ([Synch List of sensor DEM map or
erMap sensors, names, error state  |Map
accuracy, expected produced
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update rate, |accuracy with
resolution, [values, information
area of Hz, gathered by
coverage pixel to cm sensors on
coverage, the rover
in sq. mts itself at the
last and
previous
sensing
captures.
getFusedTot [0G2 ->0G3 ([Synch List of sensor DEM map or
alMap Sensors, names, error state Map
accuracy, expected produced
update rate, |accuracy with
resolution, [values, information
area of Hz, from any
coverage pixel to cm sensing
coverage, sources at
in sg. mts any
capturing
time, e.g.
rover,
orbital, other
mobile or
static
devices on
the surface.
getLocalPose [0G2 -> 0OG3 |Synch frame name, (frame string, |Pose + Produces the
List of sensor uncertainty |LocalPose
sensors, names, Pose of the
accuracy, expected BodyFrame
update rate |accuracy in the
values, LocalTerrain
Hz Frame
getGlobalPos [0G2 -> 0OG3 |Synch frame name, (frame string, |Pose + Produces the
e List of sensor uncertainty |GlobalPose
sensors, names, Pose of the
accuracy, expected BodyFrame
update rate |accuracy in the
values, GlobalTerrai
Hz nFrame
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getAbsolute [0G2 ->0G3 ([Synch frame name, |frame string, |Pose + Produces the
Pose List of sensor uncertainty |AbsolutePos
sensors, names, e Pose of the
accuracy, expected BodyFrame
update rate |accuracy in the
values, AbsoluteFra
Hz me
getTargetRel [0G2 -> 0OG3 ([Synch frame name, |frame string, |Pose + relative pose
ativePose List of sensor uncertainty |(3 axes
Sensors, names, position and
accuracy, expected 3 axes
update rate |accuracy attitude) of
values, the target
Hz Body Frame
expressed in
the chaser
Body Frame,
with
associated
uncertainties
getTargetRel |[0G2 -> 0G3 |Synch frame name, [frame string, |twist + relative
ativeVelocity List of sensor uncertainty |speed (3
Sensors, names, axes
accuracy, expected translation
update rate [accuracy speeds and 3
values, axes rotation
Hz speeds) of
the target
Body Frame
expressed in
the chaser
Body Frame,
with
associated
uncertainties
getModelOf [0G2 ->0G3 ([Synch frame name, |frame string, |3D Model This
Target List of sensor interface
Sensors, names, produces the
accuracy, expected 3D model of
update rate [accuracy the target
values, spacecraft.
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Hz
initDFPC Orch -> DFPC|Synch DFPCID DFPC Name |Success,
Error States
stopDFPC Orch -> DFPC [Synch DFPCID DFPC Name |Success,
Error States
getDFPCStat |Orch -> DFPC|Asynch DFPCID, Name, N/A
us Frequency, |Hz,
Callback Function ptr
function ptr
getDFPCPose |Orch -> DFPC |Asynch DFPCID, Name, N/A
Frequency, |Hz,
Callback Function ptr
function ptr
getDFPCDEM |Orch -> DFPC |Asynch DFPCID, Name, N/A
Frequency, [Hz,
Callback Function ptr
function ptr
initICU 0G3 -> 0G4 |Synch NULL N/A Success,
Error States
setOperating |[0G3 -> 0G4 |Synch OpModelD |ID Number |[Success,
Mode Error, invalid
States
selectSensor [0OG3 -> 0G4 ([Synch SensorlD, ID number, [Success,
Configuratio Configuratio |ConfiglD Error, invalid
n niD number States
getOpModeS |0G3 -> 0G4 |Synch OpModelD |ID Number |Runtime or
ensorStatus error states
getStereoCa |DFPC-> 0G4 |Synch NULL N/A Depth map
mDepthMap or error
state
getStereoCa |DFPC-> 0G4 |Synch NULL N/A Disparity
mDisparityM Map or error
ap state
getStereoCa |DFPC-> 0G4 [Synch NULL N/A Point Cloud
mPointCloud or error
state
getStereoCa |DFPC -> 0G4 [Synch NULL N/A Images or
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mlimages error state
getToFPoint [DFPC-> 0G4 [Synch NULL N/A Point Cloud
Cloud or error
state
getIMUData |DFPC-> 0G4 |Synch NULL N/A Linear
acceleration
& angular
velocity or
error state
getLidarPoin |DFPC-> 0G4 |Synch NULL N/A Point Cloud
tCloud or error
state
getlLaserScan [DFPC -> 0G4 |Synch NULL N/A Planar 2D PC
or error
state
getRadarSca |[DFPC -> 0G4 [Synch NULL N/A 2D or3D PC
n or error
state
getHRCamer [DFPC -> 0G4 [Synch NULL N/A Image or
almage error state
getTIRCamer |[DFPC -> 0G4 [Synch NULL N/A Image or
almage error state
getForceTor |DFPC-> 0G4 |Synch NULL N/A Wrench data
que or error
state
getStructure |[DFPC-> 0G4 [Synch NULL N/A Point Cloud
dLightPointC or error
loud state
getStarTrack |[DFPC-> 0G4 [Synch NULL N/A Orientation

erOrientatio
n

data or error
state




