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Executive Summary

This document identifies and addresses the adaptations required for CDFF sub-components
required for deploying a set of DFNs or a complete DFPC on a space grade computer (not
space qualified) i.e a LEON architecture board with RTEMS as the operating system. A
subset of CDFF functions will be selected for being ported to an avionics testbed that is
representative of space-grade computing platforms.

The second case addressed is the deployment in a decentralized space grade architecture
that is representative of a SPARC Leon3/4 board running RTEMS with an FPGA
coprocessor such as the Zync Ultrascale SoC. The aim is to perform a portability check and
profiling of the selected functions. The use of an FPGA coprocessor will be used to verify
that some appropriate DFNs can be accelerated by use of an FPGA in connection with the
rest of the DFPC running on a conventional microprocessor.

The planetary track is the show that the developed DFPCs can be exploited in real time and
in realistic conditions. Among the scenarios that have been defined in RD5 (D4.1: Technical
trade-offs analysis) in order to define an specify the required DFPCs for the planetary track,
the ones which experimental achievement is targeted are - long traverse, Rendez-vous and
getting back to base or lander.
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1 Introduction

1.1 Purpose

This document describes in detail the design of the implementation of the orbital and
planetary reference scenarios. It includes the description of the EGSEs and the detailed
design of the software, the latter being based on the design of the CDFF as described in
D4.2.

The document addresses two reference implementations (i.e. integration and validation
tracks): the first one at the consortium level, RI-INFUSE, and the second one at the SRC
Space Robotics level, RI-SRC.SR. The objective of RI-INFUSE is to demonstrate and
evaluate the full capabilities of the CDFF: from space compliance to state-of-the-art
algorithms, from traditional to innovative sensors, and even possibly control in the loop. The
objective of RI-SRC.SR is to demonstrate that the CDFF is ready to be integrated with OG1,
0G2, OG4 and OG6.

1.2 Structure

This document is structured as follows:
Section 1: This is introductory material.
Section 2: Deployment methods of CDFF on RTEMS, FPGA’s and Multi-robot EGSEs

Section 3: Description of the 3 EGSEs and approach to port CDFF to these architectures

1.3 Applicable documents

AD1  InFuse Grant Agreement
AD2 InFuse Consortium Agreement

AD3 InFuse internal management manual for project partners

1.4 Reference documents

RD1 Description of Action document
RD2 D3.1 Technological Review
RD3 D3.2 System requirements

RD4 D3.3 Early CDFF architecture and ICD
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RD5 D4.1 Technical Trade-off Analysis
RD6 D4.2 Advanced CDFF architecture and ICD
RD7 D4.3 CDFF Unitary and integrated test plans

RD8 D4.4 Preliminary design document

1.5 Acronyms

DF: Data Fusion

CDFF: Common Data Fusion Framework
API: Application Program Interface

OO0S: On-Orbit Servicing

RCOS: Robot Control Operating System
DFN: Data Fusion Node

DFPC: Data Fusion Process Chain/Compound
DFNCI: Data Fusion Node Common Interface
DPM: Data Product Manager

FPGA: Field-Programmable Gate Array

HDL: Hardware Description Language

HLS: High-Level Synthesis

MW: Middleware

LOS: Line of Sight

Fps: Frames per second

OOS-sim: On Orbit Servicing simulator

OG: Operational Grant

IMU: Intertial Measurement Unit

OT: Orbital Track
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PT: Planetary track
OBC: On Board Computer
DEM: Digital Elevation Model

FPGA: Field Programmable Gate Array
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2 CDFF deployment requirements

This section describes the required EGSEs for deploying a set of DFNs or a complete DFPC
on a space grade computer (not space qualified) i.e a LEON architecture board with RTEMS
as the operating system. The objective of this activity is to demonstrate the capability of
porting DFNs that are middleware independent onto space grade computation platforms
that can enable future space applications on space flight hardware. Utilizing distributed
processing (locally) with FPGAs supporting as coprocessors can provide an acceleration of
critical and computationally heavy functions. To demonstrate this, one or more DFNs will be
selected by doing a trade-off on the complexity of the algorithms and porting effort to port
via high level synthesis or VHDL and deploy it on an FPGA coprocessor, supporting the main
Leon 4 processor.

2.1 Leon architecture with RTEMS

A subset of CDFF functions will be selected for being ported to an avionics testbed that is
representative of space-grade computing platforms. The objectives of this porting
experiment are two:

e Perform a portability check, i.e. assess the compatibility of the CDFF software with
the limited resources of space processors (computational power, memory size) and
with the specific constraints in terms of development environment, operating system,
programming languages, available libraries

e Perform profiling of the selected functions, i.e. measure the performance of the
selected CDFF modules on a space processor in terms of execution speed and
memory consumption.

The target platform for the porting of a subset of the CDFF software is a LEON4 processor.
This choice has been based on the fact that one of the most promising high-performance,
radiation-hard processors that will be available in Europe in the near future is the GR740, a
quad-core LEON4 processor that has been designed as the ESA Next Generation
MicroProcessor (NGMP). For spacecraft applications, LEON processors are normally used
with the RTEMS operating system, therefore the InFuse architecture EGSE will be a LEON4
+ RTEMS platform.

2.2 Decentralized computing architecture

This section describes how CDFF will be deployed in a decentralized space grade
architecture that is representative of a SPARC Leon3/4 board running RTEMS with an FPGA
co-processor such as the Zync Ultrascale SoC.

An FPGA can be used to accelerate data processing operations by implementing dedicated
algorithms in digital logic. However, FPGA acceleration is challenging and intensive in both
programming implementation and power consumption per logic cell compared to
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implementation on a microprocessor. For this reason, only selected algorithms (represented
by specific DFNs) will be chosen for coprocessor acceleration.

The use of an FPGA co-processor will be used to verify that some appropriate DFNs can be
accelerated by use of an FPGA in connection with the rest of the DFPC running on a
conventional microprocessor. As full implementation of DFNs in Verilog/VHDL would require
more time and resources than is available for such a functional test, we will instead use
high-level synthesis (HLS) tools to convert a subset of C++ code from a DFN representing
the function to be accelerated into VHDL, which will then be implemented on an FPGA. To
facilitate connection of a microprocessor to the FPGA, we plan to perform this test on a
Xilinx Zynqg system-on-a-chip device using the Xilinx SDSoC toolchain for HLS and code
integration. The degree of compatibility with RTEMS needs further investigation, but an
RTEMS board support package is available for the Zynq platform and it is likely that an
implementation of RTEMS with HLS support is feasible.

2.3 Integrated planetary track scenarios

The aim of the integrated scenarios for the planetary track is the show that the developed
DFPCs can be exploited in real time and in realistic conditions. Among the scenarios that
have been defined in RD5 (D4.1: Technical trade-offs analysis) in order to define an specify
the required DFPCs for the planetary track, the ones which experimental achievement is
targeted are:

e lLongtraverse
e Rendez-vous
e Getting back

2.4 Multi-robot planetary track scenarios

No actual multi-robot scenario has been defined in RD5, as their achievement would require
a decisional layer that yields cooperative decision making and execution coordination. Yet,
some DFPCs implement functions that can be exploited for multi-robot collaboration. These
are:

e DEM fusion: one robot receives the DEM built by another robot, and fuses it into a
larger DEM. This naturally implies the DEM Building DFPC
e Inter-robot localisation, which can be achieved by two different means:
o Direct localisation of one robot with respect to the other, resorting to the Point
Cloud Model-Based Localisation DFPC
o Indirect localisation, by registering point-cloud data, DEMs, or point-cloud
data with a DEM, resorting to the LIDAR Map-based Localisation DFPC.
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3 Description of the EGSEs

3.1 LEON architecture with RTEMS

3.1.1 LEON4 processing board

The single board computer used is a GR-LEON4-ITX evaluation board from Gaisler. The
board is equipped with a LEON4 SoC implemented in a Structured ASIC from eASIC
technologies. The LEON4 SoC has the following features:

e Dual core SPARC V8 integer unit with 7-stage pipeline, 8 register windows, 8 KiB
instruction and 4 KiB data caches, hardware multiplier and divider, power-down
mode, hardware watchpoints

e non-blocking double precision IEEE-754 floating point unit

e Memory Management Unit

e Multi-processor interrupt controller

The processor core frequency is 200 MHz. As mentioned above, the system has level-1 data
and instruction caches but does not feature any level-2 cache.

o LEGH4 EEETS e LEOH4 IEEETS4 e e —

o SPARC ¥B FPU g SPARC I U : el TAG doms

Supgen - Supgon Debrirg 11001000
Uinit 4 D-cache bcacha Mul & Linit 4 D-cache bcacha Ml & Lirsi

Ditw Ditw

. AMBA AHB L.} . AMBL AHE BARELI
Axif AHE

Gt Al g 200 ks Bridge

PCI PCI Trace

Figure 1: Block diagram of the dual core LEON4 SoC used in the GR-LEON4-ITX board.

The SoC has two AHB buses: the one with the processors and the memory controllers runs
at 200 MHz, while the one with most of the peripherals (e.g. USB, Ethernet, PCI) runs at 100
MHz. Low speed peripherals are connected to two APB buses.
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On board memories are 256 Mbyte of DDR2 400 SDRAM and 64 Mbit of SPI Serial Flash
PROM. The board provides plenty of data interfaces, most notably 2 10/100 Mbit Ethernet
interfaces, but also USB, CAN bus, PCI, SPI, 12C, UART.

Figure 2: GR-LEON4-ITX evaluation board.

3.1.2 FPGA co-processor with Leon board

The challenge facing embedded processing algorithm implementations in FPGA logic is that
procedural image processing code is very difficult to convert into VHDL or Verilog code for
implementation into pure logic. Essentially, each operation performed on data must be
converted into a logical operation or hard-wired arithmetic logic unit in sequence. This
makes even simple floating point vector algorithms very complex in logic implementation
and is the main reason that vector processing engines on accelerated graphics cards are
most commonly used for computer vision. To overcome this challenge, we make use of
High-Level Synthesis (HLS) methods that automate the conversion of procedural code into
logical constructs. The toolchain we use for this is the recently released Xilinx SDSoC
environment, an Eclipse-based software suite designed to write complete software systems,
then move specific algorithms into the Programmable Logic (PL) area of a hybrid
System-on-a-Chip (SoC) device with FPGA built in such as the Zyng-7000 series
processors, which combine an FPGA with a dual-core ARM Cortex-A9 hard microcontroller.
We currently use the AVNet MicroZed Z-7020 board for prototyping and testing algorithms
at present due to it’s small size, low cost, and accessibility for code development having
been in production for several years. This board is shown in Figure 1, and the specifications
are as follows:

o Arm Cortex-A9 @667MHz, 1GB SDRAM, 128Mb Flash, 100 I/O
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e Artix-7 FPGA (AXI bus), 74K logic cells, 53.2k LUTs, 3.3Mb RAM

Figure 3: MicroZed board with Zyng-7020

The Xilinx SDSoC environment is used to build boot images on SD card that contain a
first-stage bootloader, a Linux kernel, a complete Linux filesystem, ELF-format binaries that
implement the software side (un-accelerated) of the application, and a bitstream that
represents the hardware (accelerated through HLS) side of the application and is uploaded
to the PL automatically on boot-up. After the HLS process, the resulting logic design in a
Hardware Description Language (HDL) is synthesized, placed, routed, optimized, and
connected to the internal AXI bus for communication by the Vivado software suite. The Linux
kernel and filesystem are derived from Xilinx’ PetaLinux distribution, which can be easily
customized for use on SoC and FPGA based processors. This process is illustrated in Figure
2. The Xilinx reVISION stack of library functions specifically designed for the HLS process in
SDSoC is also used to expand the functions that can be moved to the FPGA. The reVISION
stack includes a small set of ported OpenCV functions through an API called xfOpenCV, and
a set of accelerated neural network implementation functions based on the Caffe framework.

Code Development Linux Kernel + Filesystem
System Profiling
L4

Optimizing Compiler i

[ J ELF ARM Binaries
g  Bootable System Image

Figure 4: Process for Creating System Image on SD Card
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3.1.3 RTEMS and BSP overview

RTEMS is a free open-source real-time operating system for embedded systems. It is the
typical choice for the LEON space processor and it has already been used in several ESA
missions.

RTEMS applications can be developed in C/C++ using different supported APIs: POSIX
10083.1b, ulTRON 3.0 and the so called classic RTEMS API (based on the RTEID/ORKID
standard). RTEMS does not provide any form of memory management or processes: in
POSIX terminology, it implements a single process, multi-threaded environment. RTEMS’
multitasking capabilities are based on priority-based, preemptive scheduling.

A complete SW toolset is available to allow the development of RTEMS C/C++ applications
for the LEONA4. In the following we briefly introduce the three main tools that are going to be
used in the frame of the InFuse project : RCC, GRMON and Mkprom.

RCC, which stands for RTEMS Cross Compiler, is an RTEMS LEON GNU cross compilation
system that brings together the following components:

GCC C/C++ compiler, version 4.4.6

GNU binary utilities

RTEMS real-time kernel with network support, version 4.10
BSP and drivers

Newlib standalone C-library

GDB cross-debugger for SPARC

GRMON is a debug monitor for the LEON processor, providing a non-intrusive debug
environment on the target hardware. It allows to perform all typical operations for running
and debugging an application on the target processor (e.g. read/write access to all LEON
registers and memory, downloading and execution of applications, built-in disassembler and
trace buffer management, breakpoint and watchpoint management, remote connection to
GDB). Typically GRMON will be connected to the LEON4 board using USB or Ethernet ports.

Mkprom is a utility used to create a boot image of an application, which can be stored into
the target’s flash PROM. Mkprom creates a compressed boot image that will load the
application into RAM, initialize various processor registers and finally start the application.
GRMON can be used to program the board’s flash PROM with the boot image generated by
Mkprom.

3.2 Porting CDFF components to RTEMS and FPGAs

3.2.1 Adaptations of DFNs to RTEMS

One of the main difficulties that we envisage in the porting of DFNs and DFPCs to the
LEON4 + RTEMS platform is represented by the large dependency of the InFuse SW on
third-party image and data processing libraries like OpenCV, PCL, OctoMap, etc. These
libraries do not support RTEMS, therefore their source code would have to be compiled in
the RTEMS/LEON environment after performing the required adaptations. Considering the
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size and complexity of these libraries, porting all of them to RTEMS/LEON is not to feasible
in the time frame of the InFuse project.

The proposed approach is to limit the porting effort to the OpenCV library, in particular to
OpenCV version 1.0. This older OpenCV library version is smaller and simpler than later
versions but provides many functions with which a few full DFNs can be built (for example
the Harris Feature Extraction). An InFuse DFPC will be identified that contains DFNs that can
be implemented using only OpenCV 1.0 function calls or, if this is not possible, that
minimizes the dependency on other libraries. Some DFNs that are considered for this porting
to LEON are the following:

e Harris Feature Extraction
e Stereo Depth Mapping based on Block Matching
e Image Resize and Filtering

The approach for addressing the case of a required library function that is missing in
OpenCV 1.0 will be to extract that function’s source code from later OpenCV version (or
from other libraries) and include it in the RTEMS/LEON program. The C++ parts that form the
DFPC controller and interface code will be taken as they are and, if issues arise with them in
the RTEMS/LEON environment, they will be modified appropriately.

The DFPC running on the LEON processor will use a TCP socket to receive input data (e.g.
stereo images) and to send output data (e.g. point cloud).

3.2.2 Adaptations of DFNs to FPGA

The process of high-level synthesis of C++ code to HDL is very limited in terms of
adaptability; many standard C++ functions and constructs cannot be converted to HDL due
to the underlying complexity required. Therefore, the DFNs ported to FPGA fabric are
selected by being either 1) composed of very simple and low-level C functions that are found
to be portable (e.g. those in math.h), or 2) part of the xfOpenCV API provided with Xilinx’
reVISION software stack that is designed for HLS use, detailed in [1].

Due to the limitations above, it is not feasible within the time frame of InFuse to port entire
DFNs and run them in FPGA fabric alone without the support of a microcontroller, mainly
due to the need to communicate between DFNs. The ARM AMBA AXI Protocol used to
communicate between FPGA components is not easily compatible with ASN.1 serialization
or generated interface functions, and communication with the DFPC manager and/or an
RCOS would require a complex interface to be developed for the FPGA. Instead, the
approach we will take is to build the core data fusion algorithms for selected DFNs into
discrete functions, move these core functions into FPGA logic with SDSoC while retaining
the DFPC controller and interface logic in C++, and compile the entire DFN with SDSoC.
Potentially entire DFPCs could be compiled this way as long as functions to be moved to
FPGA logic can be partitioned out from the rest of the DFN functionality.
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The Data Fusion Nodes that have been selected for full porting of core functionality based
on the above criteria are as follows:

e Harris Feature Extraction (implemented using xfOpenCV)
e Stereo Depth Mapping based on Block Matching (implemented using xfOpenCV)
e Image Resize and Filtering (implemented using xfOpenCV)

Additionally, experimental partial porting of some Data Fusion Nodes will be performed to
the extent that experimental use of HLS ultimately allows. DFNs that will be test-ported to
determine the extent of acceleration possible are as follows:

e Triangulation of features using basic math functions (partial support in HLS and
xfOpenCV)

e Feature Matching using basic logic operations (partial support in HLS and xfOpenCV)

e Essential Matrix estimation using RANSAC (previously tested on FPGA but not HLS)

Additional DFN functionality may be ported as the limitations of the current HLS
implementation are better established throughout this work, and particular attention will be
paid to the acceleration of functions with high processing load. At the moment, it is
assumed that all remaining DFNs will operate within the Zyng ARM microcontroller.

Porting custom developed software to RTEMS deployed on a space representative
hardware with an FPGA co-processing unit seems to be the path taken by the space
industry for upcoming/future space applications. While an RTEMS BSP is available for the
Zyng-7020 platform, accelerating functions using HLS from within RTEMS has never been
done and constitutes both a high risk of extending development time, and a highly beneficial
capability for future development of InFuse. In the interest of ultimately enabling a full
embedded link between RTEMS and an FPGA, experiments will be performed to compile
RTEMS binaries using SDSoC and moving core functions of DFNs into FPGA logic, in the
manner detailed below in section 3.2.2. If success is achieved in compiling and running
RTEMS within the time frame of InFuse, a proof-of-concept test of accelerating a simple
DFPC while running RTEMS on the Zyng will be conducted. Regardless of whether this test
will be conducted, some useful information on the feasibility of using HLS within RTEMS will
be obtained.

3.3 Integrated planetary track scenario EGSE

Mana and Minnie from LAAS-CNRS are the robots that will support these scenarios: they are
described in detail in the D5.2 EGSE description.

3.4 Planetary track multi-robot EGSE

As stated in section 2.4, no actual multi-robot scenario will be built, but functionalities
required by multi-robot scenarios will be demonstrated.
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The multi-robot EGSE is composed of the robots Mana and Minnie as they are deployed for
the integrated scenarios, and each of the three multi-robot functionalities will be manually
triggered by an operator, from the ground control computer.

Triggering this functions is made through requests sent to the DFPCs over the deployed Wifi
network. Regarding data exchanges between the two robots, two options are currently
considered:

e No direct communication between the robots is exploited. In this case the data to be
exchanged transfer through the ground station

e Direct communication between the robots is exploited. In this case the ground
control station only send the requests to the involved DFPCs.

At the time of writing this deliverable, the choice between these two options remains
pending.

For each of the considered multi-robot functionalities, the data to be exchanged are the
following:

e DEM fusion: a part of a DEM built by one robot is transferred to the other

e Direct inter-robot localisation: the relative position between the two robots is send by
the robot A, which applied the Point Cloud Model-Based Localisation DFPC to the
robot B, that has been localized by robot A, and both robots transmit their position
estimate to the other.

e Indirect inter-robot localisation: a part of a DEM built by robot A, or a sequence of
point clouds acquired by this robot, is transferred to the other robot B, which applies
the LIDAR Map-based Localisation DFPC. Subsequently, robots A and B exchange
their positions.
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4 Conclusion

This deliverable so far describes the 3 target EGSEs that are complementary to the EGSEs
which will be used for testing and validation of Orbital and Planetary RI of the CDFF. The
requirements for deploying a sub-set of DFPCs and DFNs from InFuse CDFF are described
for each target computational architecture (ARM/Leon4/FPGA) with the supporting operating
system (Linux/RTEMS). The deployment of DFNs on FPGAs for accelerating processing -
either entire DFN or a specific computationally expensive function within a DFN has been
illustrated. After doing a trade off on the availability of supporting libraries between the
Leon4 (RTEMS) and the ARM-FPGA coprocessing board, a set of DFNs that is likely to be
ported to both the Zync and Leon boards are listed. The multi-robot EGSE consists of the 2
rovers from LAAS that will deploy DFPCs for collaborative mapping (DEM fusion) and
localization (direct and indirect). The details of the rovers are well described in D5.2 and not
repeated in this deliverable to avoid duplication of content.
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