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Executive Summary

This document presents the detailed design of the InFuse CDFF. It consists of an
implementation detail of CDFF components in orbital track. The document provides the
detail design, including internal and external interfaces of Data Fusion Node (DFN), Data
Fusion Processing Compound (DFPC), and also exposes interfaces to an external such as
0G4 and OG2. Several use cases are identified and related detail design of DFPCs and
DFNs are extensively described. Consequently, this document serves as a guideline for the
software development of the orbital track associated to the CDFF framework.
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1 Introduction

1.1 Purpose

The purpose of this document is to provide a detailed design for the implementation of
orbital reference scenarios. The detailed design includes the definition and specification of
EGSE as well as the software detailed design. The software design is based on the CDFF
preliminary design [RD7] and the technical trade-off analysis [RD5]. The document
addresses two related reference implementations (i.e. integration and validation tracks), the
first one at the consortium level, RI-INFUSE, the second one at the SRC Space Robotics
level, RI-SRC.SR. The objective of RI-INFUSE is to demonstrate and evaluate the full
capabilities of the CDFF, from space compliant to state-of-the-art algorithms, from
traditional to innovative sensors, and possibly including control in the loop. The objective of
RI-SRC.SR is to demonstrate CDFF is ready to be integrated with OG1, OG4 and OG6.

1.2 Document Structure

In brief, the document is structured as follows:
Section 1: This introductory material.
Section 2: The reference scenarios and validation of the implementation

Section 3: The system modeling of the test bed to emulate a chaser and target satellite of
OOS operations.

Section 4: The detailed architecture and design - of the data fusion processing compound
( DFPC) and associated DFN

Section 5: Detailed description of EGSE that will be used for testing and validating Orbital
reference implementation of CDFF.

Section 6: Conclusion
Section 7: Reference

Section 8: Appendix

1.3 Applicable Documents
AD1  InFuse Grant Agreement

AD2 InFuse Consortium Agreement

AD3 InFuse internal management manual for project partners
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1.4 Reference Documents

RD1  Description of Action document

RD2 D2.2: System Requirements and Operational Concept

RD3 D2.3: Functional and Physical Architecture Specification

RD4 D3.2: System Requirements and Scenario descriptions

RD5 D4.1 Technical Trade-off Analysis
RD6 Facilitators Interface Control Document

RD7 DA4. 2 Preliminary Design Document

RD8 D5.2 Planetary Rl and associated EGSE Detailed Design

1.5 Acronyms

DF: Data Fusion

CDFF: Common Data Fusion Framework
API: Application Program Interface

OOS: On-Orbit Servicing

RCOS: Robot Control Operating System
DFN: Data Fusion Node

DFPC: Data Fusion Process Chain/Compound
DFNCI: Data Fusion Node Common Interface
DPM: Data Product Manager

HDL: Hardware Description Language

HLS: High-Level Synthesis

MW: Middleware

LOS: Line of Sight

Fps: Frames per second
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OOS-sim: On Orbit Servicing simulator
OG: Operational Grant

IMU: Inertial Measurement Unit

OT: Orbital Track

PT: Planetary track

OBC: On Board Computer

DEM: Digital Elevation Model

FPGA: Field Programmable Gate Array
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2 Reference Scenarios Implementation

Here we describe the detailed implementation, and associated demonstration and
validation scenarios presented in [RID4 & RIDS5].

2.1 Introduction

A rendezvous mission for an on-orbit servicing has been defined irrespective of an orbit
(LEO, MEO,GEO) in [RID4], hence the choice of an orbit is left to the end user of the CDFF.
The performance of the reference implementation is influenced mainly by the intensity and
direction of the sun with the respect to visual and TOF sensors. The reference
implementation (RI) takes account of various conditions of space lighting by employing
appropriate rendezvous sensors such as a LIDAR and a camera system. Moreover, the RI
should address the space environment related to the target background which poses
challenges during approach or proximity operation. The target background may be the
following:

e Deep space background ( Fig.1), where the sensor points away from the Earth and
towards space objects. In this case, other celestial bodies such as stars may exist
as a background (not shown here)

e Farth and deep space (Fig.2), the sensor line of sight slightly drifted from nadir
direction, enabling the Earth and deep space in sensors field of view. The sensor
may also point completely toward the nadir direction

Figure 1: Deep Space background to a target
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Consequently, the mission definition, preparation and execution should consider such
sensor and target configuration with respect to space or Earth in order that the RI captures
typical scenarios of a space mission.

Furthermore, it is possible to assume a certain orbit in space to support navigation to the
target satellite so that the dynamics of the client spacecraft can be used to predict and filter

the state estimate provided by CDFF. This choice of orbit will be left for the end user of the
CDFF.

Figure 2: Earth and deep space background to the target

The RI of the orbital track consists in the relative localization, which include approaching a
target spacecraft from far-range to docking/berthing of to/on the desired region of interest.
In practice, the rendezvous of a target space object is bounded by range and time as
illustrated in the following Figure (the numerical values are approximate and varies
according to the requirements of a certain mission). The range of operations pose specific
requirement in specification, design and implementation of sensor and software
components. Moreover, the farther the target from the servicer is, the lesser the accuracy
requirement.
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Servicer
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Figure 3: lllustration of a spacecraft (a servicer) rendezvous to a target from far-range to
close-range and states that should be estimated.

The demonstration and validation of orbital scenario can be performed by

e Software simulation, for example rendering the target at various ranges
e Hardware and software simulation

The software simulation is relatively easy and flexible validation approach in order to
reproduce the on-orbit scenarios, demonstrate and validate the CDFF framework as well as
DFPCs. However, such validation approach is not sufficient to reproduce the real space
environment and optical characteristics of the target spacecraft. Thus, the DFPCs
demonstrated with a software simulation environment could not reliably capture the real
world scenarios that could encounter in space missions.

More realistic validation approach is to simulate the space environment and the optical
characteristics of the target satellite with a representative hardware, such as a sun
simulator with a high power floodlight, full or scaled mock-up of a target satellite and deep
space or Earth’s albedo background. This is what we call an Electrical Ground Support
Equipment (EGSE). However, the hardware simulation limits the range of operation. This
range limitation can be partially overcome by using

e scaled mock-up of a satellite
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e representative subranges for mid-range validation.

We foresee the latter approach to validate the DFPCs in the mid-range and close-range.
Table 1 shows the rendezvous ranges often used for on-orbit servicing and formation flying
mission, and a demonstration and validation distances in InFuse.

Range Approximate InFuse
distance demonstration and
validation distance

Observables

Far-range 10’s km to 100°’s m N/A Bearing and range

Mid-range 100°s mto5m 17mto 2m Position and
attitude

Close-range 5mto 1m 2mto0.5m Position and
attitude

Table 1: Rendezvous and demonstration / validation ranges, and respective observables

The reference implementation will be demonstrated and validated with the data recorded
with OG6 facilities listed in Table 2.

OG6 Facility Validation range Remark
DLR OOS-sim Close-range
GMV facility Mid-range recorded data and

collaboration with 0G4
sensors

Table 2: Demonstration and validation range and associated EGSE

In order to validate in the mid-range, the sensor data recorded at OG6-GMV facility should
consist in at least

- sequence of time stamped point clouds from LIDAR and corresponding
synchronized ground truth pose trajectory

- sequence of time stamped stereo images and corresponding synchronized ground
truth pose

The ground truth for validation of algorithms in mid-range can be generated through
calibrated senor, robot and target as follows:

- transformation of target frame to TCP frame of a robot carrying the target satellite
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transformation of Tcp frame of target robot to TCP frame of servicer robot
transformation of TCP frame of a servicer robot to the sensor (camera, LIDAR) frame

Moreover, a wavefront or a CAD model of the target satellite, which will be post-processed

to suite for a certain data fusion algorithm is required. Inter-sensor transformation is also
required, for fusion of camera data with LIDAR.
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2.2 Detection, Reconstruction and Tracking of a Target

An on-orbit servicing involves rendezvous operations from the location where the servicer
spacecraft is put in-orbit to the resident space object (target spacecraft). The navigation
function requires various maneuvers during approach. The fundamental operations that
enable to achieve the spacecraft navigation to a target include mainly a target detection and
tracking. In order to precisely track the target at a given range of distance, an accurate
geometric model of the spacecraft is essential. In case of inaccurate geometry, it is
necessary to reconstruct the satellite/spacecraft with an aid of navigation sensors.
Particularly, at a very close-range where higher accuracy is required, the reconstruction of
the desired region of interest (e.g grasping region) on the target spacecraft enhances the
performance for an on-orbit servicing during visual servoing.

In this Section, we describe each localization function (DFPC), and provide a general
overview of the DFPC components (DFN). Each scenario is implemented in one or several
use cases. The Use cases are distinguished by the use of different types of sensors or by
different main DFPC structures. Each DFPC structure can in turn be instantiated in various
“flavors” where different combinations of functions with the same type of inputs and
outputs can be used. These variations on a DFPC are described in section 4.1.

The following section will address reference implementations at two levels:

e RI-INFUSE: the consortium level, in which we demonstrate and evaluate the full
capabilities of the CDFF.

e RI-SRC.SR: the SRC Space Robotics level, that demonstrates the CDFF is ready to
be integrated with OG1, OG2, OG4 and OG6.

2.2.1 RI-INFUSE: Detection, Reconstruction and Tracking

The reference implementation in InFuse will be carried out mainly with the DLR OOS-sim.
The objective is to carry out an offline validation of the reference implementation.
Furthermore, an online demonstration can be conducted with selected DFPC. The offline
validation consists in primarily data recording and data exploitation. The evaluation metric
relies on an accurately calibrated test facility used to carry out the validation. The ground
truth obtained from a robot joint encoders and a hand-eye calibration will be used to assess
the performance of reference implementation.

The package diagram in Fig.5 shows an overview of foreseen software and hardware
elements in order to carry out the reference implementation.
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RI-INFUSE-Detection-Tracking-Reconstructior

CDFF-Support ‘

Data Fusion Processing Chair |

CDFF-Core |

Core algorithms Internal Data

CDFF-Dev

Ground segment | Ground truth

Command| [ Visualization Data logging ER Ao

Sensor Suite ‘

Sensordata acquistior |

Stereo camera | | MU |

Facilitators Testbed ‘

Mission | Simulation |
| Servicer | | Target | | Manipulator Robots-Servis:er/Target
dynamics

Figure 4: Package diagram of the demonstration and validation scenario in orbital track.

2.2.2 Use Case 1: Far-range Target Detection and Tracking

Regarding the validation and demonstration approach for this use case, current discussions
between InFuse and the PSA have brought the conclusion that, on the one hand, a full
physical validation of this scenario is not currently possible with our internal hardware
setups, and on the other hand, simulation-based validation would not be representative
enough. Therefore, this use case will still be described, but its implementation will be put on
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standby to increase the emphasis on mid-range operational scenarios which can actually
be performed on the foreseen physical test beds.

Since, at far range, it is only realistic to accurately estimate the target bearing, we focus this
use case on a simple 2D camera. The target, which we assume can possibly have its own
translational and rotational motion, is first detected in the image by dense matching, then
this bearing measurement is fed into a classic filtering function which uses a chaser and
target motion model to ensure a continuous and robust tracking. Additionally, the tracking
filter would benefit from having access to inertial measurements of the chaser, using it
either for a simple state prediction, or as a measurement for state correction. Finally, user
interaction is needed to initialize the system by designating the target to be tracked in an
acquired image.

2.2.2.1 Description

The core data fusion implementation thus requires the following high-level functions:

- Dense image matcher,
- Tracking filter.

Additional ad-hoc functions are also required to integrate a full validation and
demonstration chain:

- Sensor acquisition for the camera and inertial measurements,

- Chaser navigation and locomotion control loops,

- Chaser (and target) position and orientation measurements for ground truth
determination,

- User interfaces for target selection, live monitoring,

- Data logging and replay functions,

- Localisation accuracy evaluation.

2.2.2.2 Algorithm Performance

Since the long range tracking DFPC only operates in bearing to guide the chaser towards
its target, we expect, from benchmarking and litterature figures, the tracking accuracy of
the center of the target to be in the order of magnitude of 1 pixel on the sensor, which
would be sufficient to allow for further rendezvous operations. Tracking rate is expected to
be sufficiently fast to perform autonomous navigation at 1Hz. Another measure of success
is the guarantee that tracking can be successful over the whole approach trajectory.

2.2.3 Use Case 2 : Mid-range 3D Model Detection and Tracking

This use case focuses on localisation with regards a model of the target which combines
visual features and geometric primitives, such as a CAD model. At close range, the
combination of a 2D camera and a radar or lidar sensor is able to detect and track visual
features on the target body. To greatly enhance tracking performance and robustness, the
algorithm can consider a user-provided 3D geometry (made of simple geometric primitives
such as planes and cylinders) into its rigid-body motion model. However, the filter still
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requires an initialisation step. In order to reduce operator intervention, we propose to
perform initialisation with a target detection function. The detector uses an offline-trained
template of the target and RGB-D measurements to provide a coarse first estimate of its
pose to the tracking function.

In the context of this implementation, with the considered EGSE, using a radar sensor may
not be feasible, however radar measurements could easily be simulated from lidar
measurements of ground truth data.

The core data fusion implementation thus requires the following high-level functions:

Model-based target detector,
Visual feature detector and matcher,
Model-based 3D tracking filter.

Additional ad-hoc functions are also required to integrate a full validation and
demonstration chain:

Template training tools based on simulated or real image data,

Tools for model geometry definition and file generation,

Sensor acquisition for the cameras, lidar/radar and inertial measurements,
Chaser and target mockups navigation and control loops,

Chaser and target pose measurements for ground truth determination,
User interfaces for target selection, live monitoring,

Data logging and replay functions,

Relative localisation accuracy evaluation.

2.2.3.1 Activity Diagram

This use case presented here is described in the following activity diagram, from the point
of view of the user. The diagram helps in highlighting the various agents involved in the use
case, and the sequence of actions necessary to implement the scenario.

1.

2.
3.

The user initialises the OOS-Sim and chooses the required trajectory from the
provided set,

The user loads the model of the target, the sensor calibration files,

Start the rendezvous/tracking process to execute the pre-planned trajectory:

a. Cameraimages, LIDAR/Radar and IMU are acquired at a predefined rate,

b. The detection DFPC is run on the current RGB-D data,

c. If detection was successful, the visual tracking DFPC is initialised, and starts
to use the image stream as input to estimate a relative pose between the
servicer and client cartesian frames,

d. The user can monitor the status and the execution, visualise data, and
receive estimated pose,

e. Execution is stopped as soon as the client has reached its target pose, or if
the trajectory has reached its final point.
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Figure 5: Use Case 2 Mid-range 3D Model Detection and Tracking

2.2.3.2 Algorithm Performance

The detection subfunction of this DFPC, performs detection of a known object and only a
coarse first estimation of its relative pose. Successful detection of the object is determined
by verifying that the estimated pose falls within a given tolerance of ground truth. The final
pose estimation accuracy is then only dependent on the spatial resolution of the trained
template (i.e. the number of discrete angular and linear camera positions used to perform
the training). The higher the number of vertices in the training, the better the accuracy, but
with the cost of a longer computation time.

Performance figures available in the litterature mirror results obtained by benchmarks
carried out during the tradeoff analysis phase. In [HINTERST2012], detection is performed
on a selection of objects with a template trained with a spatial sampling of 15 degrees in
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rotation and 10 cm in scale. In these conditions, the target is successfully detected, on
average, between 83% and 93% of the time, with an average rate of 8Hz on a desktop
computer.

Our benchmarks in simulation indicate similar performance, but the spatial sampling of the
training will need to be refined, as the size and range of the target is around an order of
magnitude larger, further impacting the pose estimation accuracy.

Concerning the tracking subfunction, from tests and preliminary benchmarks performed
during the tradeoff analysis, we expect the tracking accuracy to be affected mostly by
scene conditions (e.g. lighting, background), target geometry, and the approach trajectory.
As a comparison baseline, the following accuracy intervals, with variations due to the
environment conditions, have been obtained with simulated rendezvous sequences
(1024x1024 camera resolution, focal length 35mm):

Table 3: Mid-range 3D Model Tracking Expected Accuracy Figures

Range (m) Position RMS Error (m) Angle RMS Error (deg)
10 0.01 t0 0.05 0.01 to 0.02
25 0.1t0 0.5 0.02 to 0.05
50 3.5t06 0.5to0 1

[HINTERST2012] Hinterstoisser, Stefan, et al. "Model based training, detection and pose
estimation of texture-less 3d objects in heavily cluttered scenes." Asian conference on
computer vision. Springer, Berlin, Heidelberg, 2012.

2.2.4 Use Case 3: Mid to Close-range LIDAR-based Tracking of a Target

This use case focuses on a simple implementation of a LiDAR-backed model-based
localisation scheme. In this case, the target model consists of a reconstructed point cloud
with a density high enough to allow for subsampling. We propose to perform a dense
matching and rigid-body optimization between the acquired point cloud and the
user-provided model. To enable a continuous tracking, pose filtering with a motion model is
also included.

The core data fusion implementation thus requires the following high-level functions:

- Point cloud matcher,
- 3D pose filter.

Additional ad-hoc functions are also required to integrate a full validation and
demonstration chain:

- Sensor acquisition for the LiDAR and inertial measurements,
- Tools for target point cloud model reconstruction,
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Chaser navigation and locomotion control loops.This refers to the simulated GNC
(quidance, navigation and control) loops found on the chaser satellite, which control
its dynamic behaviour in rendezvous maneuvers. In this case, these functions will be
covered by the OOS-Sim equipment.

Chaser and target pose measurement for ground truth determination,

User interfaces for target selection, live monitoring,

Data logging and replay functions,

Localisation accuracy evaluation.

Some challenges about this approach are foreseen, namely the issue of potentially large
resolution differences between the model and acquired point clouds.

2.2.4.1 Activity Diagram

This use case presented here is described in the following activity diagram, from the point
of view of the user. The diagram helps in highlighting the various agents involved in the use
case, and the sequence of actions necessary to implement the scenario.

1.

2.
3.

The user initialises the O0OS-Sim and chooses the required trajectory from the
provided set,

The user loads the model of the target, the sensor calibration files,

Starts the rendezvous/tracking process to execute the pre-planned trajectory:

a. LiDAR and IMU are acquired at a predefined rate,

b. The point cloud tracking DFPC is initialised, and starts to uses the LiDAR
stream as input to estimate a relative pose between the servicer and client
cartesian frames,

c. The user can monitor the status and the execution, visualise data, and
receive estimated pose,

d. Execution is stopped as soon as the client has reached its target pose, or if
the trajectory has reached its final point.
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Figure 6: Lidar-based Tracking of a Target Activity Diagram

2.2.4.2 Algorithm Performance

Since this is a similar, yet simplified implementation of the Mid- and Close- Range, 3D
reconstruction and object detection DFPC (Use Case 5) working with a complete, dense
point cloud, we expect a lower general accuracy and robustness, but a possible increase in
execution rate. We can thus expect euclidean distance to be below 5% of R, where R is the
maximum operational distance of the camera, and a final angular distance to be below 10°.

2.2.4.3 Use of Point Cloud Data from Other Sources

Although LIDAR provides a means by which to obtain point clouds directly, other methods
are possible - specifically the use of stereo vision and visual reconstruction (see section
2.2.6). InFuse is a modular system, and therefore allows point cloud generation from
different sources to be used in the same algorithms. Therefore, it is possible for LIDAR
point clouds to be used for 3D model-based target tracking as described in 2.2.6 by
modification of the DFPCs used.
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2.2.5 Use Case 4: Mid- and Close-range Visual Tracking of a Target and
Estimation of Robot Relative State

In this use case, we focus on a camera-based pose estimation of a target satellite provided
an ordered image sequence in respective timestamp. We assume a non-cooperative target,
where neither vision-aiding markers nor GN&C on-board sensors on the target spacecraft
are accessible for exploitation. Thus, the pose tracking relies on calibrated camera images
and a geometric model of the target. It is assumed that the geometric model of the target
can be obtained either from a spacecraft manufacturer’s CAD model or reconstruction and
modeling techniques.

The pose estimation provides the 3D position and orientation between two cartesian
coordinate frames located on the servicer frame or TCP of a robotic manipulator, and on
the target or a chosen grasping point on the target spacecraft. In order to perform the pose
tracking, we employ image sequences, resulting from the relative motion of the servicer and
client satellites using two cameras in stereo configuration. The algorithm will rather exploit
each camera image independently and fuse the data to compute the pose. This two
monocamera fusion has an advantage particularly in space application; in case one camera
fails due to unexpected radiation, the tracking can proceed with the remaining monocular
camera. Notice that two camera configuration may be used in case a higher accuracy is
required at close range, otherwise a monocular camera can be used to reduce
computational burden. The monocular camera with a priori knowledge of the geometric
model of the target can be used to estimate the absolute position and orientation.

The visual tracking in 6 DOF relies on a local optimization, hence it requires an external
initialization as well as re-initialization in case of a loss of tracking. The external initialization
could be achieved by a global 3D detection method, e.g from a DFPC described in Use
case 2. Furthermore, the visual tracking and detection DFPCs must have a synchronized
sensor data in order to perform detection-tracking procedure robustly. In fact, there may
exist certain delays because of the intensive computation of the global detector compared
to the local tracker which is much faster. If the detector is based on sensor data other than
the tracker camera, a relative pose of the sensors must be pre-determined through
calibration procedure. The workflow of the visual tracker and the detector is illustrated in
Fig.8. Notice that, the detector is inactive during tracking and is activated on demand such
as when re-initialization is required. This sleep-mode is used to efficiently utilize resources
(memory, processor and power).
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Figure 8: The workflow of the integrated visual tracker and detector DFPCs.

We remark that the same visual tracking method is used both for mid- and close-range,
with an appropriately selected camera and lense system according to range.

2.2.5.1 Description

Hereafter we describe the tracking procedure and processing flow.

Preparation (offline):

e 3D model pre-processing of the target geometry
e (Calibration of stereo cameras and camera - TOF sensors (if any)
e A robot TCP- sensor calibration, aka hand-eye calibration

The tracking procedure follows

1. The user determines mode of tracking (mid-range or close-range), based on the
appropriate distance to the target and respective camera-lense specification. If the
mode of the operation is close-range, the user should define the desired grasping
point of the client (goal point).

2. The user loads the model of the target, the calibration file and a pre-planned or
reference trajectory.

3. Start the rendezvous/tracking process to execute the the pre-planned trajectory:

a.
b.

C.

Camera image is acquired at a predefined rate

The visual tracker waits until the initialization takes place by the detection
DFPC

The visual tracking DFPC uses the image stream as input to estimate a
relative pose between the servicer and client cartesian frames

The user can monitor the status and the execution, and receive estimated
pose

The visual tracking is stopped and the process finishes as soon as the client
is out of field of view of the servicer or at a predetermined distance to the
target.

2.2.5.2 Activity Diagram

Here we describe the functional aspects of the visual tracking. It is basically a model-based
edge tracking, following the classical contour matching method yet a state of the art
technique. The activity diagram in Fig.9 shows a stereo camera based pose tracking
procedure and interface to external DFPC.
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Figure 7: Activity diagram of edge-based pose tracking

2.2.5.3 Algorithm Performance

The performance of the algorithm is measured according to the accuracy with respect to
range and robustness to space lighting. With regard to lighting, two boundary conditions
are considered where the lighting is very poor hence the target is under illuminated, and the
space lighting is highly directional to a reflective surface, leading to over illuminated target.
In this lighting condition, the camera-based tracking algorithm is expected to provide
inaccurate and unreliable pose estimate. The bottom line here is, that a vision-based
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algorithm could be reliably used only in appropriate lighting condition with distinctive visible
image features on the target. However, with support of target dynamics identification, a
long-term prediction can be performed to improve the visual tracking performance in case
of worst lighting condition. Identification of a target dynamics is currently not in the scope
of InFuse.

Moreover, the performance of a visual tracking depends on a structure of the target, hence
it may not be feasible to specify its performance boundaries without knowing the target. An
accuracy of 30 mm at close- range and 5% error at mid-range is achieved for a typical
satellite, with solar panel, adapter rings and launcher bracket interface

2.2.6 Use Case 5: Mid- and Close- Range, 3D Reconstruction and object
detection

The localization approaches described above assume that the object geometric model
exists as in the form of CAD model or by 3d reconstruction. Below, we describe the latter
as a use case of the orbital implementation. The 3D Reconstruction and tracking DFPC
family is useable within close range (0-2m) and mid range (2-17m) subject to appropriate
sensor capabilities (sufficient separation of stereo cameras and illumination range on
LIDAR/ToF devices). This use case is split into two DFPCs due to complexity of
implementation. The 3D reconstruction DFPC performs environment reconstruction from
camera images - in most cases stereo images as per the InFuse sensor suite, but with
some degradation of performance monocular images could be used - and also active
devices such as LIDAR and Time-of-Flight (ToF) cameras that produce point clouds
directly. Different flavors of DFPC are designed to perform reconstruction from these
different sources using common DFNs. The 3D tracking DFPC operates on the scene point
clouds that are produced from the reconstruction process to identify instances of a
pre-defined model within the scene.

2.2.6.1 Description

To allow a tracker spacecraft to identify and estimate the movement of a target spacecraft,
four options are possible according to the sensors available: 3D reconstruction from a 3D
Lidar or ToF camera, 3D Reconstruction from a stereo camera, 3D Reconstruction from a
mono-camera, 3D reconstruction from mono camera and 3D Lidar and ToF camera. In the
first case we obtain a point cloud directly from the sensors, in the second and third case,
the point cloud is computed by detection of 2d features, matching and 3d triangulation of
the correspondences. By projecting the keypoints into three dimensions, we build up a
point cloud of the target, which can then be matched in shape to a point cloud model, and
the pose of the model accurately obtained by three-dimensional keypoint correspondences.

The operation of 3D reconstruction proceeds as follows:

1. Parameters must be set for the sensors used, resolution, and sensor type (mono
camera, stereo camera or TOF/LIDAR point cloud)

2. For the case of identifying a target shape, a point cloud model must be pre-stored
or loaded into the system with known resolution and parameters
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3. The sensor calibration must be available

a.

b.

C.

When using cameras, the camera parameters (frustum parameters, focal
length etc.) must be known.

When using a stereo camera, the camera baseline must be know in addition
to the above parameters.

For using ToF cameras or LIDAR, the scaling and range of data must be
known

4. Images are read in from the 2D visual camera(s) or point clouds from ToF cameras
or LIDAR.
5. If the mono camera is used:

a.
b.
c.

features are extracted from the images;

Features from an image are matched with a suitable past image;

The correspondences are used for the computation of a camera matrix and
estimation of the camera transform between the two images;

A 3d triangulation step allow to project the features correspondence in 3d
space, and obtain a point cloud.

The sequence of pose estimates from one image to a past image allows the
computation of the current pose of the camera with respect to the initial
pose.

6. If the stereo camera is used:

a.
b.
C.
d.

e.

A disparity map is computed and it is used for the construction of a 3d point
cloud;

Features are extracted from both left and right images;

Features from the left image are matched with a suitable past left image;

The correspondences are used for the computation of a camera matrix and
estimation of the camera transform between the two images;

The sequence of pose estimates from one image to a past image allows the
computation of the current pose of the camera with respect to the initial
pose.

7. If a ToF Camera or 3D Lidar is used:

Qoo

o

A point cloud is already available directly from the sensor;

3d features are extracted from the point clouds;

Features from the points cloud are matched with a suitable past point cloud;
The correspondences are used to compute a transform between the two
point cloud;

The sequence of transform estimates from one point cloud to a past point
cloud allows the computation of the current pose of the sensor with respect
to the initial pose.

8. If we use mono camera and a ToF Camera or 3D Lidar then:

a.
b.
C.

A point cloud is already available directly from the sensor;

Features from an image are matched with a suitable past image;

The correspondences are used for the computation of a camera matrix and
estimation of the camera transform between the two images;

. The sequence of pose estimates from one image to a past image allows the

computation of the current pose of the camera with respect to the initial
pose.
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9. The point cloud must be scaled, potentially filtered for outliers, and the resolution
established.

10. The point cloud is merged with the reconstructed 3d environment in the position
defined by the estimated sensor pose;

11. Features are extracted from the point cloud and the object model;

12. Features are matched and a transform from model to scene is estimated.

To perform tracking, the following process is used, and will be done in a separate DFPC
due to the clear separation of processes once a point cloud is produced.

The operation of model-based tracking proceeds as follows:

18. The point cloud is culled if there is a significant resolution difference between the
resolution of model and scene clouds

14. The scene is matched with the model using 3D descriptors to determine instances
of the model within the scene.

15. The process is repeated with new sensor data. Successive matches will indicate the
motion of the model within the scene

2.2.6.2 Activity Diagram

In Figure 8 we show a diagram of the complete 3D reconstruction and tracking process.
On the left side of the picture, we are using a mono camera and a LIDAR sensor for 3D
reconstruction. On the right side of the picture, an instance of a model within the point
cloud can be tracked by identifying 3D correspondences. Again, the 3D reconstruction
process (up until “Solve PnP for Poses” on left) is done in a separate DFPC from the 3D
tracking process (following Scene Point Cloud” on right).
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Figure 8: Activity Diagram of 3D Reconstruction and Tracking

2.2.6.3 Algorithm Details

Due to the complexity and the number of algorithms used in the 3D Reconstruction and 3D
tracking DFPCs, a more detailed description of how the algorithms work is provided as
follows.

2.2.6.3.1 Feature Matching

We use ORB (Oriented FAST and Rotated BRIEF) point descriptors for 2-D feature
matching. First, a method of keypoint detection must be used to obtain keypoints from a
sequence of images. The FAST keypoint detector (Features from Accelerated Segment
Test) is frequently used for keypoint detection due to its speed, and is used for quickly
eliminating unsuitable matches in ORB. Starting with an image patch p of size 31x31, each
pixel is compared with a Bresenham circle centred on that point (built 45 degrees at a time
by ). The radius of the surrounding circle of points is nominally 3, but is 9 for the ORB
descriptor, which expands the patch size and number of points in the descriptor. If at least
75% of the pixels in the circle are contiguous and more than some threshold value above or
below the pixel value, a feature is considered to be present. The ORB algorithm introduces
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an orientation measure to FAST by computing corner orientation by intensity centroid,
defined as

mOO 00

m, my,
| = Ul - q
C= - where m. Expy 1(x,).

¥ v

(1)

The patch orientation can then be found by . Since the FAST detector does not produce
multi-scale features, a Harris filtered scale pyramid is used to compare several scales of
features.

2.2.6.3.2 ORB Keypoint Description

The feature descriptor provided by BRIEF is a bit string result of binary intensity tests T,
each of which is defined from the intensity p(a) of a point at a relative to the intensity p(b) at
a point at b:

1:p(a)<P(b)}
tp;a,b)= { 0:nla)>nlh)

and

flp= > 2 (psa,b).

(3)

BRIEF descriptors can be referred to as BRIEF-k, where k is the number of bytes needed to
store the descriptor. The descriptor is very sensitive to noise, so Gaussian smoothing is
applied to the image patch that the descriptor acts on. The more smoothing, the more
matches can be obtained. Also, the basic BRIEF descriptor falls in accuracy quickly with
rotations of more than approximately 10 degrees. To make BRIEF invariant to in-plane
rotation, it is steered according to the orientations computed for the FAST keypoints. The
feature set of points (a,b) in 2xn matrix form is rotated by multiplication by the rotation
matrix R, corresponding to the patch orientation © to obtain the rotated set F:
o (al... an)

b b,

4)

The steered BRIEF operator used in ORB then becomes:
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,(p,0)f, (p)V(a,b)EF

A lookup table of steered BRIEF patterns is constructed from this to speed up computation
of steered descriptors in subsequent points.

2.2.6.3.3 Matching Process

The first step is to match the keypoints with descriptors generated by BRIEF between two
images taken from slightly different positions, attempting to find a corresponding keypoint
a’ in the second image that matches each point a in the first image. Brute-force matching of
all combinations of points is the simplest method which generally involves an XOR
operation between each descriptor and a population count to obtain the Hamming
distance. This is an O(N? algorithm, and takes relatively long to complete. However, The
FLANN (Fast Library for Approximate Nearest Neighbor) search algorithm built into OpenCV
is used in current work.

2.2.6.3.4 The Fundamental Matrix

To obtain depth in a 3-D scene, an initial baseline for 3-D projection is first required, which
for the case of monocular images requires the calculation of the Fundamental Matrix F,
which is a the general 3x4 transformation matrix that maps each point in a first image to
another second image. It is generally preferable to use stereoscopic vision for point cloud
reconstruction because the baseline can be obtained with two cameras a known distance
apart at each location. As a result, the fundamental matrix is constant and can be
calculated relatively easily. For monocular vision, the fundamental matrix must be estimated
using homographies. The set of “good” matches M, is used to obtain the fundamental
matrix for the given scene. The fundamental matrix is the matrix F that maps every point on
the first image to its corresponding location in the second image, based on the assumption
of linear geometry between two viewpoints. Consequently, each keypoint a, in the first
image will map to a corresponding keypoint a’ on the epipolar line (the line of intersection at
a’ of the second image plane with the camera baseline) in the second image by the relation

ai'TFa’,=0, i=1,..,n.
©)

For three-dimensional space, the matrix F has nine unknown coefficients and Equation 6 is
linear and homogeneous, so F can be uniquely solved for by using eight keypoints with the
method of Longuet-Higgins. However, image noise and distortion inevitably cause variation
in points that make it difficult to obtain a single “correct” F for all points. Therefore, for
practical calculations, a linear estimation method such as linear least squares or RANSAC
must be used. RANSAC (RANdom SAmple Consensus) is an efficient algorithm designed
for robust model fitting that can handle large numbers of outliers, and is commonly used
with OpenCV and other algorithms. We use RANSAC for its speed to estimate F for all
matches and estimate the associated epipolar lines. Outliers (defined as being keypoints
more than the tolerance 0.1 from the estimated epipolar line) are then removed from M, to
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yield a final, reliable set of keypoint matches M,. If no keypoint matches remain by this
point, then there are too few features in common between the two images and no
triangulation can be created.

2.2.6.3.5 The Essential Matrix

To perform a three-dimensional triangulation of points from two-dimensional feature planes
and a transformation F between them, it is necessary to take into account any
transformations and projective ambiguity caused by the cameras themselves. A camera
matrix is defined as C=K]|R]|t], being composed of the calibration matrix K, the rotation
matrix R and the translation vector t. We also need to locate the position of the second
camera C2 in real space with respect to the first camera C1. The cameras can be
individually calibrated using a known pattern such as a checkerboard, but fairly good
results have been achieved by estimating the camera calibration matrix as

s0w/2
K=| 0sw/2|
no 1

(7)

For real-world point localization, we can use the so-called essential matrix that relates two
matching normalized points “x and “x' in the camera plane as:

éi'Teai=o, i=1,..,n.
8)

In this way, E includes the “essential” assumption of calibrated and is related to the
fundamental matrix by E

2.2.6.3.6 Orientation

After calculating E, we can find the location of the second camera C2 by assuming for
simplicity that the first camera is uncalibrated and located at the origin (C1=[l|0]). We
decompose E=txR into its component R and t matrices by using the singular value
decomposition of E. We start with the orthogonal matrix W and its transpose , where

(0-10}
w=|100
001
©)

and the singular value decomposition of E is defined as
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100
SVD(E)=U | 010 \v.
000

The matrix W does not directly depend on E, but provides a means of factorization for E.
There are two possible factorizations of R, namely R=UW'V' and R=UWV', and two
possible choices for t, namely t=U(0,0,1)" and t=-U(0,0,1)". Thus when determining the
second camera matrix C2=K][R|t], we have four choices in total.

(10)

2.2.6.3.7 Triangulation

Given the essential matrix E, and a pair of matched keypoints, it is now possible to
triangulate the original point positions in three dimensions using least-squares estimation.
The algorithm described by Hartley and Sturm for iterative linear least-squares triangulation
of a set of points is used as it is affine-invariant and performs quite well without excessive
computation time. A point in three dimensions x when written in the matrix equation form
Ax=0 results in four linear nonhomogeneous equations in four unknowns for an appropriate
choice of . To solve this, singular value decomposition can again be used, or the method of
pseudo-inverses. An alternate method is to simply write the system as Ax=B, with A and B
defined as

axCI % 0—C1 0:0 aXC1 2 1—C1 o1 aXCIZ; 2—C1
ayCl 2 0—C1 1,0 ayCl 2 1—C1 11 ayCl 2 2—C1

0;2

1;2

A=
beZZ;O—CZO;o bxczz;l-czo;1 bXCZZ;Z—CZO;2
be2, € ,bLC2 -C2 bQ2, -2,
(11)
and
—axC12;3—C10’_3
. —ayClz;a—Cllr_3
-bXCZ 2 3-(':20’_3
-bC2, -C2, ..

(12)

Solution of the resulting system of equations (in this case, using singular value
decomposition) yields x, which can be transformed into undistorted “real” coordinates by
x=KC1x. This assumes that the point is neither at 0 nor at infinity, so very distant points
may have to be removed before this process. Because solutions are possible for either
direction of the translation vector t between the cameras, or for a rotation of 1t radians
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about the vector t, so this triangulation must be performed four times, once for each
possible combination of R and t, and each resulting point set checked to verify it lies in
front of the camera. We use a simple perspective transformation using C1 and a test to
ensure x,>0. Triangulation produces a point cloud in local (camera) coordinates with points

P

2.2.6.3.8 Pose Estimation

The last step is to find the object pose from the 3D-2D point correspondences and
consequently the egomotion of the camera relative to the feature points, commonly known
as the Perspective & Point (PnP) problem. Bundle adjustment can also be performed to
optimize the point cloud after triangulation, but works best on a large number of points and
images for, while we are focused on relatively fast triangulation over a few frames. For this,
we apply the OpenCV implementation of the EPnP algorithm. Four control points denoted
as are used to identify the world coordinate system of the given reference point cloud with
n points p,...p,, chosen so that one is located at the centroid of the point cloud and the rest
are oriented to form a basis with the principal directions of the data. Each reference point is
described in world coordinates as a normalized, weighted sum of the control points with
weightings a;. As this coordinate system is consistent across linear transforms, they have
the same weighted sum in the camera coordinate system, effectively creating a separate
basis

Zaul P, Zaul’za =1
(13)

The known two-dimensional projections of the reference points can be linked to these
weightings with the camera calibration matrix K considering that the projection involves
scalar projective parameters as

,:w,( ) KZaul
(14)

The expansion of this equation has 12 unknown control points and n projective parameters.
Two linear equations can be obtained for each reference point, and concatenated together
to form a system of the form Mx=0, where the null space or kernel of the matrix gives the
solution x to the system of equations, which can be expressed as
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m
x= z By,
i-1 (1 5)

where the set is composed of the null eigenvectors of the product corresponding to m null
singular values of M. The method of solving for the coefficients 3 depends on the size of m.
Given perfect data from at least six reference points, m should be 1, but in practice, m can
vary from 1 to 4 depending on the camera parameters, reference point locations with
respect to the basis, and noise. Hence, four different methods are used in the literature
[Error! Reference source not found.] for practical solution, but the methods are complex and
not summarized here.

2.2.6.3.9 Object Pose Estimation

A set of three-dimensional keypoints are chosen from both the scene and the model by
picking individual points from the cloud separated by a given sampling radius. Normals are
calculated for these keypoints relative to nearby points so that each keypoint has a
repeatable orientation. The keypoints are then associated with three-dimensional SHOT
(Signature of Histograms of OrienTations) descriptors. SHOT descriptors are calculated by
grouping together a set of local histograms over the volumes about the keypoint, where this
volume is divided into by angle into 32 spatial bins. Point counts from the local histograms
are binned as a cosine function of the angle between the point normal within the
corresponding part of the structure and the feature point normal. This has the beneficial
effects of creating a general rotational invariance since angles are relative to local normals,
accumulating points into different bins as a result of small differences in relative directions,
and creating a coarse partitioning that can be calculated fast with small cardinality. This
method generalizes to the descriptor

D(p)= [ U WSH;j(p)
i=1
(20)
which can also be used for color texture descriptions.

Comparing the scene keypoint descriptors with the model keypoint descriptors to find good
correspondence matches is done using a FLANN search on a k-dimensional tree (k-d tree)
structure, similarly to the matching of image keypoints. Additionally, the BOrder Aware
Repeatable Directions algorithm for local reference frame estimation (BOARD) is used to
calculate local reference frames for each three-dimensional SHOT descriptor to make them
independent of global coordinates for rotation and translation invariance.
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Once a set of nearest correspondences and local reference frames is found, clustering of
correspondences is performed by pre-computed Hough voting to make recognition of
shapes more robust to partial occlusion and clutter.

Evidence of a particular pose and instance of the model in the scene is initialized before
voting by obtaining the vector between a unique reference point C and each model feature
point F and transforming it into local coordinates by the transformation matrix R, = [LMLX,
L, LM,Z]T from the local x-y-z reference frame unit vectors LY, L™ , and L" . This
precomputation can be done offline for the model in advance and is performed by

calculating for each feature a vector

Vi,L [LJX'L:y"er] (CM F )
21)

For online pose estimation, Hough voting is performed by each scene feature F°, that has
been found by FLANN matching to correspond with a model feature F™, casting a vote for
the position of the reference point CV in the scene. The transformation RVS_ that makes
these points line up can then be transformed into global coordinates with the scene
reference frame unit vectors, scene reference point FSj and scene feature vector V°, as

IG [;x' Jy,l_ ]VL+F

(22)

The votes cast by V° ; are thresholded to find the most likely instance of the model in the
scene, although muItlpIe peaks in the Hough space are fairly common and can indicate
multiple possibilities for model instances. Due to the statistical nature of Hough voting, it is
possible to recognize partially-occluded or noisy model instances, though accuracy may be
lower.

2.2.6.4 Algorithm Performance

In the case a single mono camera is used, the performance of this algorithm has been
tested on a simulation of tracking a CubeSat. Four different tests were performed in the
laboratory on image sequences produced from robotic movement of a camera in
equidistant arcs about a 1U CubeSat engineering model. The SHOT descriptor radius and
cluster size parameters were varied to test the relationship of these variables to the
resulting matches. Similar performance is expected from the stereo camera reconstruction
as a similar set of DFNs is used. The reconstruction process is faster using LIDAR and ToF
camera hardware as it does not require initial feature detection, matching, selection, and
triangulation steps.

Test Number Number of Number of [ Number of | Descriptor | Cluster
Number | of Images | scene features | keypoints | matches Radius (m) | Size (m)
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1 220 5584 167 63 0.05 0.1
2 220 5584 632 594 0.1 0.5
3 32 1816 7 28 0.05 0.1
4 32 1816 7 70 0.1 0.5

Table 6: Parameters for 3D Reconstruction and Tracking Tests

The process of reconstruction and tracking was profiled running on the ARM core of a Xilinx
Zynq Z7020 SoC microcontroller (667MHz ARM-Cortex A9). Table 7 shows the timing
results for each part of the 3D reconstruction process, and Table 8 shows the timing results
(in seconds) for the 3D model-based identification and tracking process'. It can be seen
from this that the majority of time is spent on keypoint production and FLANN search during
the tracking process.

Test Feature Feature Feature Fundamental Essential Triangu- PnP Ego-M TOTAL
Detection Matching Selection = Matrix Matrix lation RANSAC otion (s)

1-2 0.12 0.058 0.015 0.083 0.0017 0.038 0.0033 0.0005 0.32

3-4 1 0.12 0.061 0.010 0.048 0.0014 0.025 0.0026 0.0004 0.27
Table 7: Timing Results for CubeSat 3D reconstruction from image sequences

Test Model Scene Modell Scene. Modell Scene. FLANN Clustering TOTAL
Normals Normals Sampling Sampling Keypoints Keypoints @ Search (s)

1 0.17 0.15 0.027 0.020 1.26 0.84 107.7 0.92 112.1

2 0.17 0.15 0.029 0.024 3.37 2.19 118.0 2.00 127.2

3 0.17 0.043 0.031 0.0083 3.31 0.37 42.5 0.63 48.4

4 0.17 0.041 0.031 0.0078 3.31 0.37 42.6 1.36 491

Table 8: Timing Results for CubeSat 3D model-based tracking

| Model | Scene |
(reference) | (current)

Figure 9: 1U CubeSat model (left) and reconstructed scene (right)

The accuracy of ego-motion estimation (effectively the tracking of the relative position of
the target) during the tracking process was additionally profiled using another test using a
3U CubeSat engineering model, shown in Figure 10. Figure 11 shows plots of the pose

" M.A. Post, J. Li, C. Clark, X. Yan. “Visual Pose Estimation System for Autonomous Rendezvous of
Spacecraft”. ESA Astra 2015: 13th Symposium on Advanced Space Technologies in Robotics and
Automation. ESA/ESTEC, Noordwijk, the Netherlands, 11-13 May 2015.
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estimation accuracy in translation and Figure 12 in rotation. The total RMS error in
translation was 7mm in X, 8mm in Y, and 7mm in Z. The total RMS error in rotation was
0.14rad about X, 0.11rad about Y, and 0.19rad about Z.

Figure 9: 3U CubeSat model (left) and match with scene (right)
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Figure 11: Tracking accuracy of 3U CubeSat model in translation
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Figure 12: Tracking accuracy of 3U CubeSat model in rotation

This tracking accuracy is considered to be accurate within the close range (0-2m) scenario.
Accuracy is expected to scale approximately linearly with distance, and can be expressed
as a percentage of the distance to target R. For the close-range scenario presented here,
positional accuracy is within 1% of R. For the mid-range scenario (2-17m), positional
accuracy is expected to remain 1% of R.

Some initial estimates of pose estimation accuracy under partial occlusion of a 3U CubeSat
target were also performed. Shadowing the target by 25% resulted in an additional ~1%
error in translation and ~2% error in rotation, shadowing the target by 50% resulted in an
additional ~7% error in translation and 3% error in rotation, and with 75% shadowing no
correspondence with the model was found.

From the testing results given, initial parameters for the DFPC are suggested as follows:

e Descriptor Radius and Cluster Size should be a fraction (1%-10%) of the size of the
object to be detected

e Descriptor Radius and Cluster Size should be the same order of magnitude

e Descriptor radius may be tuned to improve the speed of the descriptor selection

e Cluster size may be tuned to increase the speed of the matching process
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e The model point density should be no more than one order of magnitude different
from the scene point density (subsampling is possible)

2.2.7 Use Case 6: 3D reconstruction and mapping with Haptic Scanning

Haptic Scanning basely consists of taking benefit of information dealing with contacts
established between a robotic manipulator and a target. In the orbital scenarios of InFuse,
haptic scanning is identified as an opportunistic strategy to collect information about the
environment: it is not foreseen to carry out dedicated haptic scanning actions or series of
actions (e.g. following a certain pattern of scanning along a structure), but rather to make
use of information available while manipulation actions are being carried out, for other
purposes. The assumption is that, when a contact takes place between the manipulator and
a target, a force is measured and is available as a piece of information. We propose to
collect and integrate such contact information into a model, that will contain sparse, but
accurate information on target points positioning (through information on encoders /
kinematic chain of the manipulator) and associated force information. Such a model, that
will translate in an augmented mesh (considering force information), may potentially be
fused with other 3D models of the environment.

Besides an opportunistic usage, it could be envisaged to trigger dedicated haptic scanning
actions (i.e. purposely establishing a contact) to disambiguate depth information in certain
locations where other sensors may have been impaired, for various reasons (e.g. visual
cameras may be dazzled by sun or reflect on shiny surface, Lidars may be misled by
transparent or translucent materials, etc.). This capability may not be a fundamental one,
but may occasionally be relevant, at limited cost. Similarly, in case of a failure with a
primary sensor (Lidar, ToF camera, stereo...), pro-active haptic scanning may help ensuring
that a basic (sparse) model of the environment may nevertheless be built - which may be
useful to take decision and plan paths in a degraded mode, from OG2 / ERGO.

Note that we do not intend in InFuse to develop and provide guidance/control/servoing
capability for a manipulator setup: the haptic scanning approach is considered a data
fusion capability, from the InFuse DFPC point of view. Only opportunistic haptic scanning is
therefore encompassed, not pro-active haptic scanning.

The core data fusion implementation thus requires the following high-level functions:

- Mesh data structure allocators :
- allowing to populate for each position an associated normal,
- allowing to query for each 3d point its associated normal if available,
- 3D Distance query functions
- Triangulation based on measured points

Additional ad-hoc functions are also required to integrate a full validation and
demonstration chain:

- Tools for target point cloud model reconstruction and visualisation,
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- End effector force & positions generations

2.2.8 Requirements

The system requirement [RD4] derives the requirements of the reference implementation in
this document. The description of the demonstration and validation scenario of InFuse
extends and solidifies this system requirement. Hence, we follow the requirement described
in Appendix 7.1 to evaluate the implementation.

2.2.9 RI-SRC.SR-Detection, Reconstruction and Tracking

The RI-SRC.SR is a superset of the RI-INFUSE, hence the descriptions tailored to the
RI-INFUSE will be applied for RI-SRC.SR. The further description specific to RI-SRC.SR will
be reported once the interfaces to other OGs are matured.

3 System Modeling

This chapter describes the InFuse system architecture and its EGSE, Facilitators (OG6),
ESROCOS (0OG1) and ERGO (OG2) products.

The objective is to identify all components, interfaces and relationships of the system. The
system is defined as a hardware and software subsystems which allow to implement
scenarios described in chapter 2. Depending on the scenario that will be demonstrated, all
parts of the overall system might not be required.

We start by presenting generic components composing a robotics system, then we list all
components that could be used, and finally we explain how they will be assembled
following a top down approach. As mentioned in previous chapters, the system architecture
corresponding to RI-INFUSE and RI-SRC.SR scenarios are presented in dedicated
sections.

3.1 Satellite and Robotic System

The actors in orbit servicing are servicer satellite, target or client satellite and robotic
manipulator. The servicer and clients are usually reproduced with a respective mock-up
satellite for ground validation and verification purposes. The motion of the satellites are
simulated with industrial robots. We categorize the system as mission and simulation
elements as in Table 3. The mission represents actual hardware systems deployed in space
and the simulation elements define ground simulation which reproduces the behaviour of
the actual space system. In general, the on-orbit servicer and client system are
represented with a robotic system to reproduce the behaviour of the space systems. Here
only kinematic aspects of on-orbit servicing is considered. In fact, the InFuse is concerned
with perception and data processing aspects and will not address the simulation of satellite
dynamics.
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Satellite/Spacecraft Ground Validation Motion
Hardware
Servicer Servicer mock-up Simulate with Industrial
robot
Target Target mock-up Simulate with Industrial
robot
Robotic manipulator Robotic manipulator Robotic manipulator

Table 3: On-orbit servicing simulation

Therefore, the satellite system in the context of on Ground validation in InFuse reduced to a
robotic system. As defined in planetary track D5.2, the robotics system is mainly composed
of robots, sensors, actuators, on-board computers, environments, ground stations,
communication links and software.

robot system: the robot in our case is an industrial manipulator having all actuators,
sensors, controllers, on-board computers and software to reproduce servicer/target
system that can be controlled in speed and direction,

sensor system: it includes all exteroceptive and interoceptive sensors used for
perception and sensing,

actuator system: it include all actuators that are in the robot and required to provide
necessary torque in order generate motion and interact with the world,

computer system: it includes all the processing units,

environment: it includes the representative space environment where the on-orbit
servicing is performed.

ground station system: it is the set of computers that allow the end-user to interact
with the manipulators,

communication link system : it consists of all communications links that required by
ground stations, on-board computers, sensors, actuators, microcontrollers to
communicate,

embedded software system: it is all the necessary softwares to operate on-orbit
servicing. It could be functionally decomposed as detection, tracking and
reconstruction.

3.2 RI-INFUSE

This section describes the InFuse system architecture dedicated to the implementation of
the RI-INFUSE scenarios.

3.2.1 System Components

The Servicer/Target system : is the robot System (shown in Fig. 11), consisting of

servicer
target
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- sensor system
- environment
- platforms such as ground station and on-board system
«ServicerTargetSystems»
ERI-INFUSE
«Servicers «Jarget» «SensorSystem» «Environment»
E 00S-simRobots = 00S-simRobot H Sensors = 00S-simLighting
<Environment» «Platform>» «Platforms
= 00S-simEnvironment = GroundStation = EmbeddedPlatform

Figure 9: On-orbit servicing system consists of servicer and targets as the main
components.

Sensor system: These are main sensors used for on-orbit servicing, including

- stereo cameras
- LIDAR
- MU

- force/torque sensors (for grasping/docking)

Each sensor can be used independently or as a system of sensors (Fig. 12) for sensor
fusion for an on-orbit servicing. Notice that one sensor is preferable to the other depending
on the range of operation between the servicer and client satellites.
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«SensorSystem>»
= Sensars
«CameraSystem>» «CameraSystem» «|IDARSystem>»
E ManipulatorCamera E DockingCamera ELIDAR
«InertialSensorSystem: «ContactSensorSystem» «PositionSensorSystem»
=My = ForceTorqueSensor H JointEncoder

Figure 10: Sensor system for an orbit-servicing.

Software system: The software is a crucial component of the on-orbit servicing robotic
system. The overview of the the software system of the orbital reference implementation is
shown in Fig.13. The sensor system (left) provides raw data in order that the software
system (middle) produces the required measurements such as position and attitude.
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Figure 11: Overview of the Software system of the orbital reference implementation.

In the figure above, The sensor system (left) supplies raw data

in order

the software

system (middle) produces data product (right) which can be communicated to an external

user such as ERGO.

3.2.2 On-orbit Servicing Simulator

Here we provide an example ground simulation system for an on-orbit servicing. The DLR
0OO0S-sim facility is mainly used for close-range operation and equipped with (Fig. 14)

e two industrial robots
e servicing robotic arm
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e Manipulator camera
e Docking camera

e force/torque sensors

B100S-sim

ServicerRobotSystem» «TargetRobotSystem»

«CameraSystem» «CameraSystem» «Force/TorqueSensor
E Servicer E Target

E ManipulatorCamera E DockingCamera E ForceToque

Figure 12: The overview of the main on-orbit servicing ground simulation.

Finally, we provide an example that shows a deployment of the CDFF on the DLR OOS-sim
(see Fig. 15).

DLR

InFuse
0O0S-sim

Ground
OBC

Station

Links & Node CDFF Links & Node| Command &
Support Control
J Computer

| InFuse Wrapper |

O Eth t
ver erne Over Ethernet
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Figure 13: Deployment overview of the InFuse with the DLR OOS-sim. The Links and
Nodes is the DLR robotics middleware used here for inter-process communication.

3.3 RI-SRC.SR

RI-SRC.SR is a subset of RI-INFUSE where less sensors will be available. Any major
difference between the different system architecture will be included in this document. The
detailed interface and workflow of OG3 between 0G4 and OG2 is provided in Appendix 7.3
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4 Detailed Architecture and Design

This chapter presents detailed description of DFPC and associated DFN corresponding to
the use cases provided in chapter 2.

1.1 4.1 DFPC Architecture View

First, we focus on the architecture of the data fusion processing compound/chain (DFPC)
and provide detail design of associated DFNs. Thus, at this level we aspire to identify and
describe

- each DFN used in DFPC,
- DFN internal interfaces,
- internal and external interfaces of DFPcs .

The DFPC description follows the DFPC specification provided in Appendix 7.2. The DFPC
architecture is presented in three parts:

e Data Flow Description: a functional description of the DFNs that compose a DFPC
and their relations, seen only from a data-flow point of view. The goal of this
description is to identify the list of required DFNs to build a DFPC.

e Data Product Management: description of the shared data between the DFNs in the
given DFPC, and the interfaces between this data and the various DFNs.

e Control Description: description of the control flow within a DFPC: the order in which
DFNs are called, DPM access to shared data, synchronicity of time stamped data.
The control flow will be achieved by the Orchestrator for implementation.

The specification, definition and the purpose of the DFPC specification are tabulated in
Table 4.

DFPC description purpose specifies/defines
Data Flow description Provides a layout and -inputs/outputs of DFPC
ordering of different DFNs [ -inputs/outputs of each
DFN
-shared data between DFNs
Data Product management | Manages the CDFF -shared data structures
products such as pose, among DFNs
map, model and features -processing units that query

and insert those data
structures
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Control description Describes flow of processes | -temporal course of the
within DFPC. Temporal execution of a DFPC
execution of a DFPC is
dictated by the orchestrator

Table 4: DFPC Specification: data flow and control description, and data product
management.

The following template is used to describe the implementation detail of each DFPC:

e [List of DFNs used : as described in section 4

e Data structures: data types of the input/output and shared Data structure, relation to
the DPM (as a client, a provider).

e DFPC Parameters : the user of the DFPC will select parameters of algorithm. The
default parameter will be provided. These parameters are set in a configuration file

The list of DFPCs and the partners responsible for developing them are provided in Table 5.
The sections below present the description of each DFPC.

DFPC Partner
Mid-and close-range detection Magellium
LIDAR-based tracking Magellium
Mid-and close-range visual tracking DLR

3D reconstruction USTRATH
Haptic Scanning SPACEAPPS

Table 5: List of DFPCs and responsible partners

The following sections present the implementation details of the DFPC in the context of the
RI-INFUSE. Since the CDFF, as well as ESROCOQOS, are not available and operational yet,
we implement the DFPC using another RCOS and middleware.

Details of INFUSE-RI:

- Middleware, RCOS (GENOM, YARP, ROS),

- DFPC Controller : implementation detail (e.g. GENOM/YARP State Machine),
- Specific data structures,

- Deployment scheme.

- AHPC interfaces : sensor acquisition, display
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4.1.1 DFPC : Far-range Object Tracking

This DFPC responds to the following reference implementation scenarios:

2.2.1 RI-INFUSE-Detection, Reconstruction and Tracking

- 2.2.2 Use Case 1 : Far-range Target Detection and Tracking

It is used to provide a relatively simple bearing-only relative localisation of the target asset
when its distance with regard to the chaser is too great to allow for a full pose estimation.
Localisation is performed through tracking, in an RGB camera input, of a visual feature
previously initialized by the user.

DFPC Inputs:

RGB image with associated metadata,
Chaser attitude from AHRS,
Radar range.

DFPC Outputs:

Estimated target bearing and range.

The DFPC will be composed of the following DFNs:

User Interface: Provides a way for the user to see the input images and initialize the
position of the target by selecting a ROl within them,

EKF Prediction: Performs a prediction of the expected position of the target feature
in the image using a chaser and target motion model and the current image
timestamp,

ZNCC Matching: Matches the saved target feature ROl within the new acquired
image,

EKF Correction: Uses the results of the matching DFN as an observation to update
the filter and compute an estimation of the relative pose of the target with regard to
the chaser. This is the DFN which provides the final pose output of the DFPC.

Some architecture choices have been made for this DFPC:

The ZNCC matcher optimizes a homography to represent feature ROI position in the
input images,

The features are represented by a ROl image, a homography with regard to its
source image, and the camera pose of the source image,

The EKF prediction is separated from the correction in order to support the case
where images are not acquired at a constant frequency. It thus needs a timestamp
input. It returns a predicted homography with regard to the current image,



O INFUSE

Reference
Version
Date
Page

D5.1
2.0.0
30-01-2018
54

D5.1: ORBITAL RI AND ASSOCIATED EGSE DETAILED DESIGN

- We currently propose to use AHRS data in the EKF correction step. However, in a
different implementation, it could be used to perform EKF prediction,

The following figures detail the DFN component structure inside the DFPC, the shared data

structures, and its DFN calling sequence.

parameters/data %

<<DFN=>
User Interface

in image: Image

in image: Image

DFPC:Long-range Tracking (OT Version) /.

<<DFN=>

<<DFN>>
EKF Prediction

out featureROI; Image”
out feat. positian: Transform’

in RoverPose: Pose

in RadarRange: Range

<<DFN=>
Feature Matching

in image: Image
in featureROI: Image™
in featurePositionini: Transform

out featurePosition: Transform”|
out updatedROl: Image®
out matchScore: double

EKF Correction

in fealurePosition: Transiorm™
in featureCamPose: Pose"

in chaserPose: Pose

in radarRange: Range

out targetBearing: Pose

<<DATA - Shared>>

Features & Tracking States

)
e

— — —
b e )
Feature || Feature camar:ﬂ EKF
RO i P Stat
il S Y

in imageTime: Timestamp
in featurePositions: Transform(]*
in cameraPoses: Pose[]"

| oul TargeiBearing: Pose

out featurePositionini: Transform

<<DFN>>

<<DFN>>

<<DFN>>
Camera : RGB

out image: Image’
inimage: Image

<<DFN>>
AHRS : GNC Pose

<<DFN=>
Target Selection: User Interface

<<DFN>>
Motion Estimation: EKF Prediction
in imageTime: Timestamp

in featurePositions: Transform[]*
in cameraPoses: Pose[]*

out featurePositionini: Transform

in image: Image
in featureRQI: Image*
in featurePositionini: Transform

out featurePosition: Transform’ |
out updatedROI: Image
out matchScore: double |

\ Feature Matching: ZNCC Correlation

Motion Estimation: EKF Correction

—plin featurePosition: Transform®
in featureCamPose: Pose®

in chaserPose: Pose

| ~>-nradarRange: Range

| :
out targetBearing: Pose_..}

out featureROl: Image’
out feat. position: Transform’

out ChaserPose: Posé.

<<DFN>>
Radar : Radar Range

out RadarRange: R

Figure 16: Long-range Tracking Data Flow Description.
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<<DATA - Shared>>
Image & tracking states

Feature
ROI

<<QUERIER>> <<QUERIER>>
ROIFeatureQuerier EKFStateVectorQuerier

in featurelndex: intf] in statelndex: int[]

out featurePositions:Transform(] out EKFStates: StateVector|
out cameraPoses: Pose][]
out featureROI: Imagel[]

Y Y
<<QUERIER>> <<QUERIER>>
getFeature: ROIFeatureQuerier

getStates: EKFStateVectorQuerier

in featurelndex: int[]

in statelndex: int[]

1. Select indexes in past features
2. Return features position information:
2.a. Feature Transform wrt to its
image
2.b. Associated camera pose

1. Select indexes current state vector
2. Return references to elements

out featurePositions:Transform[] out EKFStates: StateVector
out cameraPoses: Pose[]

Figure 17: Long-range Tracking Data Product Management.
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Figure 18: Long-range Tracking Control Description

4.1.2 DFPC : Mid- and Close-range Target Detection

This DFPC responds to the following reference implementation scenarios:

- 2.2 2 Detection, Reconstruction and Tracking of a target
- 2.2.3 Use Case 2 : Mid-range 3D Model Detection and Tracking

The processing compound attempts to detect a known target within its input stereo image
pair and, if successful, returns a coarse estimated relative pose. The detection process is
based on the LINEMOD template detection algorithm, which requires a 3D CAD model of
the target. A training step is first performed offline with the model, and the resulting
template is then loaded by the detection DFN. The template consists in a large database of
the object’s most discriminant features in various modalities, including gradients and
surface normals, from all possible point of views. Each input image is then efficiently
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compared to the template, and the function signals a successful detection if the computed
similarity exceeds a given threshold.

As this is only a detection DFPC, we do not include any long term tracking nodes such as a
filter, but instead this DFPC could be used in conjunction with Mid-range 3D Model
Tracking as a pose initialization step.

DFPC Inputs :

- Left and right stereo images with associated metadata.
DFPC Outputs:

- Estimated chaser pose with regard to target.
The DFPC will be composed of the following DFNs:

- Stereo Rectification: Performs a rectification of both cameras in the bench using
their calibration parameters,

- OpenCV Stereo Correlation: Computes, refines and filters a disparity map from the
left and right rectified images. Computes the associated depth map,

- LINEMOD Template Detection: Loads the target template and performs a detection
using an input RGB image and its depth map. This DFN provides the final DFPC
estimated target pose signalling a successful detection.

The following figure details the DFN component structure inside the DFPC.

DFPC: Mid-range 3D Model Detection (OT Version) }
<<DFN>> <<DFN>> <<DFN>>
Stereo Rectification Stereo Correlation Template Detection
in leftimage: Image in leftimage: Image in modelTemplate: Template* T
lin rightimage: Image in rightimage: Image in pointCloud: PointCloud out targetPose: Pose
) in image: Image
‘ in leftimage: Image out leftimageRectified: Image out pointCloud: PointCloud
out rightimageRectified: Image out targetPose Posei
‘ in rightimage: Image 1
<<DATA - Shared>>
Template data
Model
emplal
R e e i <<DFN>> <<DFN>> <<DFN>>
mera : : OpenCVRectification:Stereo OpenCVStereo: Stereo LINEMOD: Template Detection
Rectification Correlation
in modelTemplate: Template*
in leftimage: Image in leftimage: Image »{in image: Image

out image: I

in rightimage: Image /m rightimage: Image in pointCloud: PointCloud
out leftimageRectified: Image/ out pointCloud: Poin|C|oud/ out targetPose: Posg—————————— 3
out rightimageRectified: Image:

Figure 19: Mid-range 3D Model Detection Data Flow Description.
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<<DATA - Shared>>
Template Data

Template
Model

<<QUERIER>>
TemplateModelQuerier

out targetTemplate: Template

A 4
<<QUERIER>>
getTemplate: TemplateModelQuerier

1. Return reference to template model

out targetTemplate: Template

Figure 20: Mid-range 3D Model Detection Data Product Management
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Figure 21: Mid-range 3D Model Detection Control Description

4.1.3 DFPC : Mid- and Close-range Target Tracking

This DFPC responds to the following reference implementation scenario:

- 2.2.1 RI-INFUSE-Detection, Reconstruction and Tracking

- 2.2.3 Use Case 2 : Mid-range 3D Model Detection and Tracking

This DFPC is activated once the chaser is close enough for the camera to resolve geometric
features on the target. It is based on the existing VISP Model-based Tracker library, which
is able to track a known 3D target using two types of features (and their combination):
edges and corners, and KLT keypoints. The tracking function is thus adapted for textured
or untextured objects, with visible edges or not. In this implementation, we attempt to
augment the camera input with a radar range measurement, which will be used to add
robustness to the tracking DFN.

The target needs to be described with an input CAD model file in order to specify its
geometric primitives. It also already includes its own sub functions such as keypoint
extraction, edge visibility computation, and real-time tracking filter, therefore the DFPC is
quite simple, as it is composed of self-contained DFNs.

DFPC Inputs:

- RGB image with associated metadata,

- Radar range.
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DFPC Outputs:

- Estimated relative chaser pose with respect to target.

The DFPC will be composed of the following DFNs:

- User interface - Pose Initialization: Displays input images, and provides an interface
for the user to (optionally) click to initialize the target pose,

- VISP Template Tracking: A self-contained DFN which implements the full tracking
chain, with keypoint extraction and matching, edge visibility computation, and pose
estimation. This DFN provides the final DFPC pose output.

The following figures detail the DFN component structure inside the DFPC.

DFPC: Mid-range 3D Model Tracking (OT Version) )

[ porameters T

<<DFN>> <<DFN>> 3
Pose Initialization Template Tracking

in image: Image in pose init: Pose
in image: Image
out feat. position: Pose]

in image: Image out targetPose: Pose out targetPose: Pose
in range: Range

<<DATA - Shared>>

<<DFN>>
Left Camera : RGB
<<DFN>> <<DFN>>
User Interface: Pose Initialization VISPModelBasedTracking:
. TemplateTracking
outimage: I

<»in image: Image

in image: Image
out targetInitPose: P in pose init: Pose

<<DFN>> in radar range: Range
Radar: Range
out targetPose: P
out range: R:

Figure 22: Mid-range 3D Model Tracking Data Flow Description
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<<DATA - Shared>>

<<QUERIER>>

<<QUERIER>>

Figure 23: Mid-range 3D Model Tracking Data Product Management
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Figure 24: Mid-range 3D Model Tracking Control Description
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4.1.4 DFPC: LIDAR-based Tracking of a Target

This DFPC responds to the following implementation scenarios:

- 2.2.1 RI-INFUSE-Detection, Reconstruction and Tracking
- 2.2.5 Use Case 4: LIDAR-based tracking of a target

The general goal of this DFPC is to perform a robust tracking of a known target described
by a point cloud, either obtained through LiDAR sensors, stereo cameras or ToF cameras.
The method requires that a sufficiently dense point cloud model of the target is provided in
advance by the user.

We propose a naive implementation of point cloud tracking built around an EKF with a
simple motion model. The measurements are provided to the filter by performing a dense
ICP matching step between the input point cloud and the provided model. The target model
is a high density point cloud created offline from a 3D model, or from prior 3D
reconstruction. The ICP algorithm is aided by an initial prediction of the target pose, and the
EKF correction step is enhanced by measurements coming from the chaser’s AHRS sensor.

For a detailed description of the EKF DFN reused in this DFPC, refer to section 4.1.5.
DFPC Inputs:

- Chaser attitude from AHRS,
- Point cloud with associated metadata from LiDAR sensor or stereo camera or ToF
camera. The point cloud density can vary, depending on the input sensor used.

DFPC Outputs:
- Estimated chaser pose with respect to target.
The DFPC is composed of the following DFNs:

- ICP Point Cloud Registration: Using an initial pose estimation, applies an ICP
algorithm to determine the transform that minimizes the distance (euclidean or other)
between 2 input point clouds,

- EKF Prediction: Performs a prediction of the expected position of the target point
cloud using the chaser and target motion models and the current image timestamp,

- EKF Correction: Uses the results of the ICP matching DFN as an observation to
update the filter and compute an estimation of the relative pose of the target point
cloud with respect to the chaser. This is the DFN which provides the final pose
output of the DFPC.

Some specific architecture choices have been made when defining this DFPC:
- The EKF prediction is separated from the correction in order to support the case

where images are not acquired at a constant frequency. It thus needs a timestamp
input.
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We currently propose to use AHRS data in the EKF correction step. However, in a
different implementation, it could be used to perform EKF prediction.

DFPC: Point Cloud Model-based Localization (OT Version) )

<<DFN>> ‘ <<DFN>>

<<DFN>>
EKF Prediction Point Cloud Registration

EKF Correction
in EKFStates: StateVector* in posePrediction: Pose lin EKFStates: StateVector*
in LidarPointCloud: PointClo fin pointCloudTime: Timestamp in sensorPointCloud: PointCloud lin measuredPose: Pose

out targetPose: Pose
in modelPointCloud: PointCloud* fin inertialPose: Pose

'in Chaserlnertial Pose: Pose .
J out posePrediction: Post

out targetPose: Pose| out targetPose Pose

<<DATA - Shared>>
Point Cloud Model & States

parameters/data AN
Target PC EKF
Madel States

<<DFN>>
Motion Estimation: EKF Prediction

<<DFN>> <<DFN>> ‘
<<DFN>: ICP: Point Cloud Registration Motion Estimation: EKF Correction|
§S0A%; tewnciond in EKFStates: StateVector*
in pointCloudTime: Timestamp

—>n posePrediction: Pose

in measuredPose: Pose
{in modelPointCloud: PaintCloud* in inertialPose: Pose

outLPG: PGy out posePrediction: Post

in EKFStates: StateVector*
in sensorPointCloud: PointCloud

out targetPose: Pos

<<DFN>>
AHRS : Inertial Pose

out targetPose Posj_?—>

out inertialPose: P

Figure 25: ICP Point Cloud Matching Data Flow Description
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<<DATA - Shared>>
Point Cloud Model

<<QUERIER>>
<<QUERIER>> .
TarguetPCQuerier EKFStateVectorQuerier
in pointcloudindex: int[] in statelndex: int[]
out targetPG: PointCloud[] out EKFStates: StateVecto
3 y
<<QUERIER>> <<QUERIER>>
TarguetPCQuerier:

getStates: EKFStateVectorQuerier

in pointcloudindex: int[] in statelndex: int[]

1. Select indgxes in past pointcloud 1. Select indexes current state vector
2. Return pointcloud 2. Return references to elements

out targetPC: PointCloud[] out EKFStates: StateVecto

Figure 26: ICP Point Cloud Matching Data Product Management
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Figure 27: ICP Point Cloud Matching Control Description
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4.1.5 DFPC : Mid- and Close-range Visual Tracking of a Target

This DFPC relates to the use case described in

- 2.2.1 RI-INFUSE-Detection, Reconstruction and Tracking

- 2.2.6 Use Case 5: Visual Tracking of a Target and Estimation of Robot
Relative State

DFPC Inputs :

- [Stream] Stereo images with associated metadata

- [Data Product] Valid initial guess of the target pose,
- [Parameter] Model file similar to wavefront format,

- [Parameter] Tracker parameters,

- [Parameter] Calibration parameters

DFPC Outputs:

- [Stream] Estimated pose
- [Stream] Estimated local velocity

The DFPC will be composed of the following DFNs (Fig. 28):

- Image undistortion

- Edge detection for an an edge based tracking,

- Kalman prediction for capturing frame-to-frame local motion

- Kalman correction for updating the prediction with measurement
- Visibility determination

- Contour sampling

- Matching model and image edges

- Pose estimation
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DFPC: Model-based Visual Tracking)

<<DFN>>
Edge Detection

<<DFN>>
EKF Prediction

<<DFN>>
EKF Correction

in imagel : Image
inimageR: Image

out edgeMapL: Image
out edgeMapR: Image

inimageTime: TimeStamp
in Image

in imageTime: TimeStamp
in Image

outedgeMapL: Image
outedgeMapR: Image

out edgeMapL: Image
out edgeMapR: Image

inimageL: Image
I
inimageL: Image

ininitialPose: Pose
|

in initialVelocity: Velocity

out estimatedPose; Pose & Velocity

<<DFN>>
Image Undistortion

inimagel: Image
inimageR: Image

out undistortedimageL: Imag
out undistortedimageR: Ima

<<DFN>>
Visibility Determination

<<DFN>>
Contour Sampling

in pose: Pose
in 3DModel: Points

in visibleModel: Points

out visibleModel: Points out samplePoints: Pointg

Contour Matching/Pose Estimation

<<DFN>>

in edgeMaps: Points
in sampledContours: Points

out pose: Pose

Figure 14: The DFN of the model-based visual tracking.

The following figure details the interaction of DFN components inside the DFPC. Notice
that the objects in the sequence diagram: model, m_contour, m_kalman and mainTracker
correspond to visibility determination, contour matching, EKF DFN respectively.
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Figure 15: Sequence diagram of the model-based visual tracker.
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The camera-based pose tracking is described by its DFNs (Table 6), DFPC parameters
(Table 7), inputs and outputs. Moreover, the input and output data types are defined to
enable interface to a Sensor Suite and data product consumer such as ERGO.

List of DFNs

Data Fusion Node (DFN) function

Edge detection extracts image edges

Kalman filtering Predicts the state based on a motion
model and updates with measurement

Image undistortion Corrects image pixels distorted due to
camera lens

Visibility determination Computes the visible model features from
the current camera view

Contour sampling Samples points along the visible contours

Contour matching and pose estimation Estimates pose by aligning image edges to
sampled contours iteratively

Table 6: Data Fusion Nodes of the model-based visual tracking DFPC

The Kalman filter tracks 12-DOF system states which contains the target pose (6-DOF)
and frame-to frame local velocity (6-DOF). Here we assume a constant velocity motion
model, i.e the frame to frame relative motion of the camera and the target is constant. The
filter inputs: process noise, measurement noise and initial covariance are tracker
parameters and have to be provided by the user. Moreover, the Kalman filter requires initial
states which could be provided by an external means such a detection DFPC. After
reasonable initialization, the filtering rate is obviously higher than actual image processing
time. Hence, the filter latency with low dimensional state vector is not our concern in this
particular case where computational burden is highly related to the image-based pose
estimation.

DFPC Parameters: There exist two types of parameters which should be specified before
the DFPC is deployed: tracker and camera parameters. The tracker and camera parameters
are related to the DFN and internal parameters, and camera properties respectively.

Parameter Parameter type

Max number of sample points Tracker parameter

Min distance between a polygon plane and | Tracker parameter
the camera center [mm]
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Subsampling factor while collecting visible
pixels [1=take all, ....]

Tracker parameter

Minimum length of a valid 3D segment
[mm]

Tracker parameter

Search distance [pixel integer]

Tracker parameter

Canny Thresholds

Tracker parameter

Angular threshold for matching edges [deg]

Tracker parameter

Maximum LSE iteration

Tracker parameter

Minimum incremental update to declare
convergence [deg, mm]

Tracker parameter

Maximum update parameters with respect
to initial prediction to declare
divergence[deg, mm]

Tracker parameter

Threshold on percentage of inlier matches

Tracker parameter

Minimum parameters wrt the last Visibility
Line Determination (VLD) to call for new
VLD [deg, mm]

Tracker parameter

Kalman filter process noise

Tracker parameter

Kalman filter measurement noise

Tracker parameter

Kalman filter initial covariance

Tracker parameter

Table 7: DFPC Parameters of t

he model-based visual tracking

Parameter

Parameter type

Number of cameras

Camera parameter

Resolution of camera [pixel]

Camera parameter

Minimum and Maximum depth [mm]

Camera parameter

Projection matrix

Camera parameter

Distortion parameters

Camera parameter

World-to-camera transformation

Camera parameter
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Table 8: Camera parameters for the model-based visual tracking DFPC

Input and output data description: The data types are described according to ESROCOS
ASN.1 in section 5.2 Datatypes. Here, we provide the data types specific to the DFPC,
model-based visual tracking.

Input data Data type description Meta-data Data type (ASN.1)
image Gray images from one or | Frame-mode-t mode-grayscale
two cameras Frame-size-t width T-UInt8

height T-UInt8

time Time [s] of image Time microseconds
acquisition T-Int64,
usecPerSec
T-Int32

Table 9: Input data type description for visual tracking DFPC

Where T-Ulntx are ASN.1 INTEGER defined in ESROCOS.

Output data Description Meta-data Data type (ASN.1)

position Position in x ,y and vector3d
z-direction

orientation attitude AngleAxisd

Velocity Translational vector3d

velocity in local
coordinate frame x,y
and z

Angular velocity Rotational velocity vector3d
in local coordinate
frame x,y and z

status Success/failure in T-Int8
pose estimation
possibly with
failure/error code

Table 10: Output data type description for visual tracking DFPC

Where vector3d:= SEQUENCE(SIZE(1..3)) OF REAL and
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AngleAxisd:=SEQUENCE(SIZE(1..4)) OF REAL as defined in ESROCOS.

4.1.6 DFPC: 3D Reconstruction

The 3D Reconstruction DFPC is specifically for reconstruction of a scene point cloud based
on motion of the target (structure-from-motion), which can supplement or replace a point
cloud obtained by LIDAR.

DFPC Inputs :

- [Stream] Left and Right stereo images with associated metadata
- [Parameter] Camera calibration matrix
- [Parameter] Additional optional parameters

DFPC Outputs:

- [Stream] Ego-motion estimation from PnP for the camera/tracker
- [Stream] Scene point cloud as reconstructed over time from motion

The DFPC will be composed of the following DFNs, with various flavor options available in
each:

- Feature detection: for identifying features in the scene
- Feature matching: for correlating features between images
o Stereo correlation or separate for monocular use
- Fundamental matrix calculation: for finding the homography between images
- Triangulation of features: to locate features in 3D space
- Perspective-and-Point (PnP) solution: to find the ego-motion of the camera

Fig.30 details the interaction of DFN components inside the DFPC. The parameters that
can be set for this DFPC include the following:

camera calibration parameters

maximum number of features

feature scaling

edge threshold

patch size

first feature level (in the case of ORB descriptors)
number of feature levels (in the case of ORB descriptors)
WTA K value (in the case of ORB descriptors)
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3D Reconstruction

FeatureExtractor FeatureMatcher FundamentalMatrix Triangulate PnPRansac PointCloudAssembler
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Figure 30: Sequence diagram of the 3D reconstruction DFPC.

4.1.7 DFPC: 3D Tracking

The 3D tracking DFPC is for locating an instance of a model point cloud within a scene
point cloud obtained from the 3D reconstruction DFPC or from LIDAR. This DFPC is
separate as it is not needed for target reconstruction, only for identification and tracking
tasks that could be potentially done by other DFPCs.

DFPC Inputs :

[Data Product] Scene point cloud from reconstruction
[Data Product] Model point cloud file (PCD, PLY, A3D).
[Data Product] Valid initial guess of the target pose,
[Parameter] Additional optional parameters

DFPC Outputs:

- [Stream] Estimated pose in reference frame of target
- [Stream] Estimated orientation and matching of target with respect to model

The DFPC will be composed of the following DFNs, with various flavor options available in
each:

- Point cloud descriptor extraction: to find keypoints in scene and model point clouds
o Point normal + SHOT feature descriptors,

- Descriptor matching: to match descriptors between scene and model
o FLANN descriptor matcher

- Correspondence grouping: to find correspondences between scene and model
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o Hough voting or ICP
- Pose estimation calculation
o Extended Kalman filter

Figure 31 shows the sequence diagram for tracking objects in a scene point cloud that has
been reconstructed by visual or LIDAR means. The parameters that can be set for this

DFPC include the following:

e Clustering algorithm to use
e Model uniform sampling radius
e Scene uniform sampling radius
e Reference frame radius
e 3D Descriptor radius
e Cluster size
3D Tracking
PointCloudAssembler DescriptorExtractor file:Model DescriptorMatcher Correspondence TargetEstimator
Scena Clowd &
' Madel Cloud |
Keypoint Extraction Scane —
‘——
Keypaint Exiraction Modal P |
Descriphor N
1 Lyl
SHOT| \
| Matchas 1
| L4l
Hough Woting -
—)
Highes! Comespondence
Fose Estimation ol
| | ‘—J
PointCloudAssembler DescriptorExtractor file:Model DescriptorMatcher Correspondence TargetEstimator

Figure 31: Sequence diagram of the model-based 3D point cloud tracker

4.1.8 DFPC : Haptic scanning

This DFPC responds to the following reference implementation scenarios

- Use Case 6: 3D reconstruction and mapping with Haptic

This DFPC will support the scanning of objects by using a force measuring sensor. This
DFPC is intended to be used on close range applications, and will complement 3D imagery
devices. The detection process is based on a force profile algorithm coupled with

odometry.

For this DFPC, a robotic arm with 7 degrees of freedom is foreseen to be used.
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The detection process will only gather data without requiring arm to be actuated.
DFPC Inputs :

- End-effector position
- End-effector force measurements
- Estimated chaser pose relative to target.

DFPC Outputs:
- 3D point cloud with normal forces embedded describing
The DFPC will be composed of the following DFNs:
- Octomap generator : Will merge force normals data into a spatial representation
- Force Mesh Generator : Will exploit the octomap data to generate meshes

representing touched objects.

4.1.8 DFPC Expected Performance

The target platform is a standard computer made of :
CPU : Intel Core i7-6700HQ @ 2.60GHz
RAM : 16GB DDR4 - 15-15-15

From these hypothesis the expected run time are :

DFN Input type Single thread - | Single thread - CPU
Memory in MB time in ms
Force Mesh Generator |cartesian Pose <1 <1
TOTAL 1 >1000fps
RI-SRC.SR

INFUSE-SRC RI is a superset of INFUSE-RI, hence further details of interface using
ESROCOS middleware with CDFF will be described during the development.

4.2 DFN

Here we present the detailed design of each data fusion node (DFN) identified in the
DFPCs. A DFN is an atomic processing entity that fulfills a given basic function. It is the
smallest unit of a complex task defined by its function, input and output. However, a DFN
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can be defined by a combination of elementary functions which may not expose their
input/output. A DFN exhibits at least two control interfaces:

e configure() and
e process()

The configure() sets all the configuration parameters of the DFN while the process() function
calls library functions to compute the outputs of the DFN.

4.2.1 DFN Template

This section of the document is adapted from the document [RD8] as the core DFN design
is shared by the planetary and orbital track. This DFN template will be used as a guideline
to design each components of DFPC.

4.2.1.1 DFN Description

We start by describing the common DFN elements.

DFN element Remarks

Generic description

Input(s) and Ouput(s) data Data here refers to:

e Actual data (e.g. Image16bit)

e Metadata (e.g. CameraParameters, Timestamp)
and are data structures necessary for the DFN to
function properly.

Input Parameters Can be provided by:
e Configuration file (e.g. Threshold, Size of patch)
e Output of another DFN (e.g. KF reinitialization)

Table 11: DFN template elements for interfacing

The DFN template elements related to implementation detail are listed in Table 12.

DFN element Remark

Performance and cost | A cost/performance estimation method which is common
estimation methods to all DFI of this DFN.

Diagnostic capacities Includes:

e FErrors/warnings at runtime (e.g. unexpected data
type, out-of-range parameter...).

e Log capabilities (e.g. try/catch results written in a
log file)

e Output reports (e.g. “if the image is all back...”)




Reference : D5.1

O INFUSE el

Page : 78
D5.1: ORBITAL RI AND ASSOCIATED EGSE DETAILED DESIGN

Fault Detection and Identification is the responsibility of
the DFN. However its Recovery (when possible) is made at
the DFPC level and is part of the Orchestrator.

Unit test This must be provided with the code, along with the
dataset used for validation.

Table 12: DFN template elements at implementation level

4.2.1.2 DFI: Template Implementation

This template applies to any DFI. As a DFN can have multiple DFls, there can be several
instances of this template under the same DFN.

DFI Name TemplateNamelmplementationi
DFI element Remark
Est. performance and cost Possibly represented, in an adequate cost/performance

space. This information should make it possible to define a
performance measure and a cost measure for a resulting
DFPC.

External library dependencies | List of external library dependencies (e.g Opencv, PCL)

Input Parameters DFl-specific input parameters. For example:
e Feature thresholds,

e Descriptor length,

[ ]

Diagnostic capacities Includes:

e FErrors/warnings at runtime (e.g. unexpected

datatype, out-of-range parameter...).

e Log capabilities (e.g. try/catch results written in a

log file)

e Output reports (e.g. “if the image is all back...”)
Fault Detection and Identification is the responsibility of
the DFN. However its Recovery (when possible) is made at
the DFPC level and is part of the Orchestrator.

4.2.1.3 DFN Description File

The DFN description file is a human readable artifact that describes the DFN based on the
DFN template. A code generator produces C++ code and corresponding python bindings
from the DFN description file.

An example YAML description file following the CDFF-Support specification is provided in
Table 13.
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File: LaserFilterDFN.yml

name: LaserFilter
input_ports:
- name: scanSamples
type: base::samples::LaseScan
doc: samples of a laser scan
- name: laser2BodyTf
type: base::samples::RigidBodyState
doc: laser to body transformation
output_ports:
- name: filteredScans
type: base::samples::LaserScan
doc: filtered laser scans

Table 13: Template description file for setters and getters of LaserFilter DFN

4.2.1.4 DFN Sequence Diagram

What happens inside the configure() and process() calls of this DFN.

4.2.2 DFN Detailed Design

The next section describes the detail implementation of specific DFNs which can be used in
certain DFPC presented above. The DFN elements and description are provided for each
data fusion node below.

4.2.2.1 DFN: Image Geometric Processing

DFN Name Image Geometric Processing

DFN element Remark

Generic description Corrects the distorted image geometrically
Input(s) and Ouput(s) data Input: gray scale image (type, cv::Mat)

Output: gray image (type, cv::Mat)

Input Parameters Camera parameter matrix, distortion coefficients

Performance and cost | N/A
estimation methods

4.2.2.1.1 DFIl: Image Undistortion
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DFI Name Image Undistortion
DFI element Remark

Est. performance and cost N/A

Input Parameters None

External library dependencies | OpenCV

Diagnostic capacities N/A

Unit test

4.2.2.2 DFN: Edge Detection

This DFN consists of the functions: Sobel filter, Scharr operator and Canny detector.

DFN Name

Edge detection

DFN element

Remark

Generic description

Extracts image edges using a given detector

Input(s) and Ouput(s) data

Input: image (type, cv::Mat)
Output: edge map (type, cv::Mat)

Input Parameters

None

Performance and cost

estimation methods

Detection time can be used to estimate the cost of any
edge extractor. For some instances, performance
evaluation methods may exist.

4.2.2.2.1 DFI: Canny Edge Detector

DFI Name

SIFT Feature Extractor

DFI element

Remark

Est. performance and cost

Input Parameters

Upper and lower thresholds, aperture size

External library dependencies

OpenCV

Diagnostic capacities

TBD
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Unit test

4.2.2.3 DFN: Estimation Filter

DFN Name Estimation Filter
DFN element Remark
Generic description Predicts the state based on a state motion model and

corrects it with a measurement

Input(s) and Ouput(s) data Input: current state, motion model, measurement,
measurement model
Output: predicted and updated state

Input Parameters Process noise, measurement noise, initial covariance

Performance and cost | Error w.r.t. ground truth.
estimation methods

Unit test

4.2.2.3.1 DFI: Extended Kalman Filter

The Kalman filter consists of the functions: init for initialization, predict and correct for
update of the predicted state with the measurement.

DFI Name Extended Kalman Filter

DFI element Remark

Est. performance and cost

Input Parameters None

External library dependencies | OpenCV

Diagnostic capacities TBD
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4.2.2.4 DFN: FeatAndSigExtractor

DFN Name

FeatAndSigExtractor

DFN element

Remarks

Generic description

Detects and extract a visual point feature from an image.
The feature is represented by a detector choosing
keypoints of interest in the image and by an array of
descriptors describing the region around the keypoint.

Input(s) and Ouput(s) data

Input: A grayscale image (e.g. cv::Mat)
Output: A vector of keypoints (e.g. cv::Keypoint) and an
array of descriptors (e.g. cv::Mat) for each keypoint

Input Parameters

Number of maximum desired features.

Performance and cost

estimation methods

Detection time can be used to estimate the cost of any
feature extractor. For some instances, performance
evaluation methods may exist.

Unit test

Comparison with known feature list in image

4.2.2.4.1 DFI: ORB Feature Extractor

DFI Name

ORB Feature Extractor

DFI element

Remark

Est. performance and cost

Relatively fast compared to SIFT/SURF but slower for
large image sizes

Input Parameters

Pyramid decimation ratio (scale factor)

Edge threshold

Number of points to produce for BRIEF

Patch size used by BRIEF

Number of pyramid levels (in case of ORB descriptor)
number of feature levels (in the case of ORB descriptors)
WTA K value (in the case of ORB descriptors)

External library dependencies

OpenCV

Diagnostic capacities

N/A
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4.2.2.5 DFN: Feature Matching

DFN Name

Feature Matching

DFN element

Remarks

Generic description

Given two sets of visual point features returns a set
matches. Each match associate two features.

Input(s) and Ouput(s) data

Input: Two vectors of keypoints and their relative
descriptors
Output: A vector of matches (e.g. cv::DMatch)

Input Parameters

Distance threshold to accept matches.

Performance and cost

estimation methods

Matching time. Percentage of outliers in the matches.

Unit test

Comparison with known matches in two images

4.2.2.5.1 DFI: FLANN Matcher

DFI Name

FLANN Matcher

DFI element

Remark

Est. performance and cost

Main alternative to a brute force matcher. Best choice in
terms of computation time but still high load.

Input Parameters

External library dependencies

OpenCV

Diagnostic capacities

TBD

4.2.2.6 DFN: Fundamental Matrix Calculation

DFN Name

Fundamental Matrix Calculation

DFN element

Remark
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Generic description

This DFN calculates a fundamental matrix given feature
positions and their matches

Input(s) and Ouput(s) data

Input: feature descriptors (type, cv::Mat); Pairings of
features, good triangulations for these features

Output: Fundamental Matrix (type, cv::Mat)

Input Parameters

None

Unit test

Calculate a known matrix from known points

4.2.2.6.1 DFI: Fundamental Matrix Calculator

DFI Name

Fundamental Matrix Calculator

DFI element

Remark

Est. performance and cost

Fast calculation

Input Parameters None
External library dependencies | OpenCV
Diagnostic capacities N/A

4.2.2.7 DFN: Bundle Adjustment

This DFN is optional for use in environment reconstruction

DFN Name

Fundamental Matrix Calculation

DFN element

Remark

Generic description

This DFN optimizes point clouds so that they are a better
match to images

Input(s) and Ouput(s) data

Input: Point cloud, feature descriptors (type, cv::Mat),
pairings of features
Output: Point cloud

Input Parameters

Camera parameter matrix, distortion coefficients

Unit test

N/A
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4.2.2.7.1 DFI: Bundle Adjustment

DFI Name

Bundle Adjustment

DFI element

Remark

Est. performance and cost

High computational load for large point clouds

Input Parameters

None

External library dependencies

Ceres-solver

Diagnostic capacities

N/A

4.2.2.8 DFN: 3D Point Computation

DFN Name

3D Point Computation

DFN element

Remarks

Generic description

Given two sets of visual point features and the calibration
matrix of the camera with which the images were taken
returns a point cloud or more generally a set of 3D points.

Input(s) and Ouput(s) data

Input: Two vectors of keypoints, their pairings and a
calibration matrix

Output: A vector of 3D points (e.g. cv::Point3f) or a point
cloud

Input Parameters

Performance and
estimation methods

cost

Computation Time.

Unit test

Given a dataset check the triangulation of points

4.2.2.8.1 DFI: Linear Triangulation (DLT)

DFI Name

Epipolar geometry

DFI element

Remark
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Est. performance and cost

Fast but dependent on humber of points

Input Parameters None
External library dependencies | OpenCV
Diagnostic capacities N/A

4.2.2.9 DFN: 2D-3D Motion Estimation

DFN Name

2D-3D Motion Estimation

DFN element

Remarks

Generic description

Estimates the self-motion of the camera using RANSAC
given a set of triangulated points and a fundamental
matrix.

Input(s) and Ouput(s) data

Input: a vector of 3D points, a vector of image points, a
camera matrix and an array of distortion coefficients
Output: a rigid transformation (Pose estimation matrix)

Input Parameters

None

Performance and cost

estimation methods

Complexity. Computation Time. Percentage of inliers.

Unit test

Given a dataset check the ego-motion estimate

4.2.2.9.1 DFI: PnP (Perspective from n-Points)

DFI Name

PnP

DFI element

Remark

Est. performance and cost

Dependent from the algorithm parameterisation, fast
overall

Input Parameters

Solving method (e.g. EPNP, lterative, P3P)
Ransac parameters

- Number of iterations

- Reprojection error

- Number of inliers

- Use extrinsic guess (for Iterative method)
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External library dependencies

OpenCV

Diagnostic capacities

Depending of the chosen method. E.g. P3P requires
exactly 4 matches or will return error.

4.2.2.10 DFN: Point Cloud Construction

DFN Name

Point Cloud Construction

DFN element

Remarks

Generic description

This DFN combines a new point cloud with an existing
point cloud by only adding points that have not been
already triangulated

Input(s) and Ouput(s) data

Input: Point cloud, re-projected points, pose estimates
Output: Point cloud

Input Parameters

None

Performance and cost
estimation methods

Computation Time

Unit test

N/A

4.2.2.10.1 DFI: Point Cloud Builder

DFI Name Point Cloud Builder
DFIl element Remark

Est. performance and cost Fast overall

Input Parameters None

External library dependencies | OpenCV

Diagnostic capacities N/A

4.2.2.11 DFN: 3D Keypoint Descriptor Extraction
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DFN Name 3D Keypoint Descriptor Extraction
DFN element Remarks
Generic description This DFN determines keypoints, their normals, and

extracts descriptors for these keypoints

Input(s) and Ouput(s) data

Input: Point cloud
Output: Keypoint descriptors

Input Parameters

Model uniform sampling radius
Scene uniform sampling radius
Reference frame radius

Performance and cost

estimation methods

Computation Time

Unit test

Given a point cloud check keypoints produce

4.2.2.11.1 DFI: SHOT 3D Keyoint Extractor

DFI Name

SHOT 3D Keyoint Extractor

DFI element

Remark

Est. performance and cost

Fast but dependent on size of descriptor radius

Input Parameters

3D Descriptor radius

External library dependencies

OpenCV

Diagnostic capacities

N/A

4.2.2.12 DFN: Correspondence Grouping

DFN Name

Correspondence Grouping

DFN element

Remarks

Generic description

This DFN finds correspondences between two sets of

point clouds

Input(s) and Ouput(s) data

Input:  Keypoint descriptors  for

descriptors for model

scene;

Keypoint




O INFUSE

Reference D5.1
Version 2.0.0
Date 30-01-2018
Page 89

D5.1: ORBITAL RI AND ASSOCIATED EGSE DETAILED DESIGN

Output: Corresponding poses of model in scene

Input Parameters

Clustering algorithm to use; Cluster Size

Performance and cost

estimation methods

Computation Time

Unit test

N/A

4.2.2.12.1 DFI: Hough Correspondence Grouping

DFI Name

Hough Correspondence Grouping

DFI element

Remark

Est. performance and cost

Highly computationally intensive depending on cluster size

Input Parameters None
External library dependencies | OpenCV
Diagnostic capacities N/A

4.2.2.13 DFN: Target Pose Estimation

DFN Name

Target Pose Estimation

DFN element

Remarks

Generic description

This DFN determines the most likely pose of the target
given a set of potential poses and a movement filter

Input(s) and Ouput(s) data

Input: Potential poses
Output: Estimated pose of target

Input Parameters

Sensor covariances for pose, model covariances for pose,
previous inputs

Performance and cost

estimation methods

Computation time

Unit test

N/A

4.2.2,13.1 DFI: Target Pose Estimator

DFI Name

Target Pose Estimator
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DFI element

Remark

Est. performance and cost

Moderate loading

Input Parameters None
External library dependencies | OpenCV
Diagnostic capacities N/A

4.2.2.14 DFN: Haptic scanning

DFN Name

Target Pose Estimation

DFN element

Remarks

Generic description

This DFN gathers opportunistically any contact point and
generates an associated mesh (point and normal)

Input(s) and Ouput(s) data

Input: Estimated pose of target

Input: Current Manipulator joint state

Input: Force sensors

Output: Force mesh representing contact points

Input Parameters

Sensor covariances for object detection

Performance and cost
estimation methods

Computation time

Unit test

Given a CAD, generate random collision paths, collision
paths must match generated force mesh

4.3 Data Types

A common data type is defined to facilitate an internal and an external interface among
DFNs, DFPCs and CDFF clients such as the autonomy (OG2) and the Sensor Suite (OG4).
The ESROCOS data types will be used for the communication among OGs, while
intermediate DFNs are free to use other data types.

The table below shows description of each data structure, with asn files name. ASN files
name in bold exist in ESROCOS?.

2 https://github.com/ESROCOS/types-base/tree/master/asn
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Data Name Description ASN file name
Image8UC1 Image with one channel of 8 Image8UC1.asn
bits values.
Image8UC3 Image with three channel of 8 Image8UC3.asn
bits values.
Image32FC1 Image with one channel of 32 Image32FC1.asn
bits values.
Timestamp Time in microsecond. Time.asn
3DPoint 3 points in space (X, v, 2). Point.asn
3DPointCloud Array of 3DPoint. PointCloud.asn
Pose Position and orientation of an Pose.asn
object.
Transform Define a pose transformation. TransformWithCovariance.asn
CalibrationMatrix Define the calibration matrix to | CalibrationMatrix.asn
a camera.

5 Detailed Description of EGSE

This chapter describes the EGSE, which will be used to validate DFPCs presented in
previous chapter.

5.1 Introduction

In chapter 4, we described the detailed architecture and design of the reference
implementations, addressing the CDFF-core data fusion components (DFN) and processing
that leads to data products (DFPC) of the CDFF. The Electrical Ground Support Equipment
(EGSE) is used as a test platform to validate the implementation by providing an orbital
simulation environment. The integrated components of the CDFF such as DFPC, DFN and
related interfaces to orchestrator, Data product manager and middleware will be verified.
The following section describes the hardware and software interfaces of the EGSE.

5.2 EGSE

The Electrical Ground Support Equipment (EGSE) provides a validation and test platform
for the CDFF, particularly for the orbital DFPCs. For this purpose, the DLR OOS-sim facility
shown in Fig. 32 will be used as our major EGSE. Moreover, datasets recorded by the
OG4 Sensor suite at the GMV facility will be used for the validation of mid-range DFPCs.
The main objective of the EGSE is the acquisition of a number of datasets from the facility
in order to validate and test the DFPCs described in CDFF of the orbital track. Hereafter we
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specify and describe the orbital EGSE design based on the document [RD5] provided by
the OG6.

DLR OOS-sim facility: It consists of

- aservicer satellite mock-up

- alightweight robotic manipulator

- atarget satellite mock-up

- an environment and space lighting simulator

DLR OOS-sim Sensors:

- Stereo cameras for close-range approach
- IMU
- LIDAR System

5.2.1 Sensor Specifications

Camera: a pin-hole projective model

- Ethernet Prosilica GC1600H, a 2.0 Megapixel camera , 25 fps @ full
resolution

- Sony ICX274 CCD sensor

- C-Mount lens focal length 6mm

IMU: provides orientation based on measurements of angular velocity and linear
acceleration

- Xsense MTI, RS232 interface

- High update rate (120 Hz), inertial data processing at max 512 Hz
- 360° orientation referenced by gravity and Earth Magnetic Field

- Integrated 3D gyroscopes, accelerometers and magnetometers

- Angular resolution 0.05 deg

- Dynamic accuracy 2 deg RMS

LIDAR: point cloud of a target by measuring time of flight of a short pulse

- Velodyne VL-16

- 16 Channels

- 300,000 Points per Second
- 360° Horizontal FOV

- =+ 15° Vertical FOV

- 100m Range
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The OOS-Sim facility consists of a lightweight robotic manipulator mounted on the
servicer satellite mock-up. A stereo camera system is mounted at the end effector and the
potential LIDAR position is indicated on the servicer.

Possible position of
LIDAR sensor
on chaser

Figure 16: The OOS-sim facility.

5.2.2 Hardware and Software Interface
The hardware interface defines an electrical and a mechanical interface between the OG3
sensors and the DLR OOS-sim facility.

- The electrical and mechanical interface of the stereo camera system is already
implemented.
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- The mechanical interface of the OG3/InFuse LIDAR (TBC) will be designed to
accommodate the sensor on the front surface of the servicer satellite mock-up. The
electrical interface will be specified.

The software interface defines the data interface between the OSS-sim facility, and the
InFuse CDFF and associated sensors. The facility uses an intel desktop linux computer for
acquisition and processing of a sensor data. The interface of the stereo camera to the
facility is already implemented.

5.2.3 Functional Interface

The functional interface is defined by the commanding trajectories and lighting condition.
Commanding trajectories:

- OGS users will be able to choose from the list of representative trajectories and
repeat them at their will from the OBC which controls the facility.

Lighting conditions:
- OG6 provides possible lighting conditions to choose.

5.2.4 Operational Interface

The operational interface consists in commanding the servicer/manipulator from a set of
pre-planned trajectories (trajectory library). The content of the trajectory library will be
further discussed with OG6.
Trajectory library:
- a set of representative trajectories for the chaser satellite, the Light Weight Robot
and the target satellite on the OOS-SIM facility will be made available for taking
measurements with the chosen sensor(s).

Trajectory library viewing:

- The trajectories in the libraries will be viewable in a dedicated simulator.
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6 Conclusion

In this document the detailed design of the orbital reference implementation is presented, in
order to facilitate the software development. Firstly, the demonstration and validation
scenarios are described by identifying various use cases for mid- and close-range
rendezvous. The use cases are mainly concerned with a target object detection,
reconstruction and tracking. They arise also from the fact that the associated method
might exploit a 3D and/or vision senor. One one hand, a point cloud-based pose tracking
exploits a LIDAR data or stereo camera to estimate relative motion between a servicer and
a target satellite. On the other hand, an image-based approach to visual tracking relies on a
monocular or stereo camera. The 3D reconstruction exploits stereo camera or LIDAR for
modeling of the target satellite. An offline data processing recorded from an EGSE will be
used to extensively study the performance of the algorithms. On the other hand, an online
validation will be performed with a selected use cases to verify the integration and real time
behaviour. Secondly, in order to identify and motivate demonstration and validation
scenarios for the reference implementation, we addressed a general target satellite
configuration with respect to rendezvous sensor, space environment and lighting in an
on-orbit servicing scenarios.

The document provides the overall view of the system modeling, consisting of the sensor
system, communication system, software system and actuator system to highlight the
possible integration of the CDFF to other systems and the Electrical Ground Support
Equipment (EGSE). The reference implementations are then described in detail, by defining
the input, output and its function. Moreover, each data fusion processing compound
(DFPC) is decomposed to its low-level function ( DFN). The interaction of each DFN within a
DFPC is illustrated with sequence diagram to show how the smallest blocks could build up
the DFPC to provide data product required by the end user such as autonomy. Moreover,
the decomposition of DFPC helps identify common functions shared among the DFPCs and
internal behaviors. Finally, the consolidated detail design of DFPCs and DFNs are described
in the last chapter of the document. Here, apart from a DFPC and DFN internal as well as
external structures, a detailed interface to an external such as autonomy framework, Sensor
Suite will be exposed through the orchestrator and data product manager. This chapter will
be updated during the development phase.
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7 Appendix

7.1 Requirements

state w.r.t

ID Catego | Title Description Identified Use | Requirement
ry Case in D5.1 | driven by SRC
and specified
in RD4
SR_DFPC_0100 | DFPC | Mid-range Pose Mid- and SR_PerfR_A30
tracking estimation close-range |5
accuracy visual
w.r.t chaser tracking
- <Im LIDAr-based
- <10 tracking
deg
SR_DFPC_0101 | DFPC | Close-rang | Pose Mid- and SR_PerfR_A30
e tracking estimation close-range |6
accuracy visual
w.r.t chaser tracking
- <0.05
m
- <5
deg
SR_DFPC_0102 | DFPC [ Mid-range | Pose SR_PerfR_A30
tracking estimation 7
& update
Close-rang | frequency
e tracking >=0.1Hz
SR_DFPC_0103 | DFPC [ Close-rang | Estimation of SR_PerfR_A20
e tracking robot relative 6
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orbital object

n

DFPC |3D 3D SR_PerfR_A20
SR_DFPC_0104 Reconstruc | Object 3D Reconstructi | 4
tion model on
reconstructio
n
SR_DFPC_0105 | DFPC | Close-rang | Object Mid- and SR_PerfR_A20
e detection | localization in | close-range |2
and robot target
tracking reference detection
frame
SR_DFPC_0106 | DFPC [ Mid-range | Facilitate Mid- and SR_UserR_A1
detection localization close-range 02
and w.r.t target
tracking structured detection
and
unstructured
objects
SR_DFPC_0107 |DFPC |3D Support map (3D SR_UserR_A1
Reconstruc | building, Reconstructi | 03
tion reconstructio | on

7.2 Technical Note on DFN and DFPC Specification

This section provides specification of DFN and DFPC, in order that a DFPC developer
should follow this guideline as a template to realize the reference implementations.

7.2.1 Scope of the Note

This appendix sets out a proposed template for the definition of Data Fusion Nodes (DFN),
and another one for the description of the various Data Fusion Processing Compounds
(DFPC) outlined in D4.1. It sits at a "pre-implementation" description level, the lowest level
before code lines. Its consistency with D4.2 must be improved. It will be become the
introduction of section 4 Detailed Architecture of DFPC in D5.2.


https://drive.google.com/open?id=1E2GTbMvRUVs_HY2LTzM9ryhYQxfOC9NOgge2kdQWwEU
https://drive.google.com/open?id=1dzXoeUw53Aa8eO9zmDp28ZrmBW5gFQI8jxTk5CSIpOQ
https://drive.google.com/open?id=1GeVU9NwVsm27YkO4rNjKTovqHc7NWmTFPpRHJNzgL_8
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7.2.2 Definitions

Data Fusion Nodes (DFN) and Data Fusion Processing Compounds (DFPC) have already
been defined in D4.2 (see e.g. appendix 1 Glossary). Here we give some more details.

7.2.2.1 DFN

Atomicity A Data Fusion Node is an atomic processing entity, in the sense that it fulfills a
single given basic function. It is the smallest brick, for the purpose of the CDFF, into which
we break a more complex processing task. At a conceptual level, a DFN is completely
defined by:

e Its purpose

e The data types of its input(s) and output(s)

Interfaces The only control interfaces exhibited by a DFN are configure and process (e.g.
see file LaserFilterDFN.pdf).

Internal makeup A DFN may be made up of several smaller functions, but these functions
and their output/input are not exposed. For instance, an ImageLineSegmentExtractor DFN is
made up of the sequence ComputelmageGradient, ThresholdimageGradient,
ChainThresholdedGradients, ChainLinearApproximation, but this sequence, which may
include some controls, remains completely internal to the DFN and is not exposed.

7.2.2.2 DFPC

A DFPC always generates at least one data product. It is an organized set (a compound) of
DFNs, with determinate data and control flows controlled by the Orchestrator. It may
additionally maintain an internal data structure, under the responsibility of the Data Product
Manager.


https://drive.google.com/open?id=1GeVU9NwVsm27YkO4rNjKTovqHc7NWmTFPpRHJNzgL_8
https://drive.google.com/drive/folders/0B2f4AImIv45fRUFkeldjdTVtSUE
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Inputs CDFF Data Products
(for 0G2)
1. Acquired data (from 0G4) sy e —~
“ £ N / f N
IMU N ] *"‘\ / 4"1\ J e 1. Environment
Images —~_or — T——f models
2. Initial data & models l = lfl o~
* Orbiter maps ( ) { ) ()
« Satellite models T\#’/ St i*/T 2. Poses
3. Knowledge
e Terramechanics | | ot
: Dynamles Internal data '
structures
i "f"\‘ ,’/‘\ : .
() :DFN (% 9) - ) :DFPC . : DFPC internal data ———» :data
N = " (arrow colors structure
distinguish

(color identifies the

different DFPCs) associated DFPCs)

Figure 17: A simple schematic view of DFNs and DFPCs.

The figure shows how DFNs can be put together to form DFPCs (two DFPCs on this figure).
A few comments:

A DFPC always links input data to one (or more) data product

The control scheme of a DFPC is not “hard-wired”, in the sense that the sequence of
DFN calls can vary, depending on the context (input parameters of the DFPC,
intermediary results of DFNs). The control is implemented by the Orchestrator.

The interfaces with OG2 have been defined in D4.1 and D4.2, but the associated
data structures still need to be defined

The interfaces with OG4 have been defined in D4.2, they comprise the “acquired
data”. The possible additional inputs (Initial Data and Models) still need to be defined
- note the “knowledge” input are not and will not be explicit, and are actually implicitly
considered in the implementation of the DFNs.

A DFPC may theoretically be made up of a single DFN (although we don't have such
a case in our list of DFPCs)

7.2.3 DFN Template

7.2.3.1 DFN Template Elements

Template element

Remarks

1. Generic description

Not much to say: must be present
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2. Input(s) and Ouput(s) data

Data here means both:

e Actual data (e.g. Image16bit)

e Metadata (e.g. CameraParameters, Timestamp)
A DFN cannot work without these data structures.

3. Input(s) Parameters

Can be provided by:
e Configuration file (e.g. Threshold, Size of patch)
o Output of another DFN (e.g. KF reinitialization)

4. Estimated performance and
cost

This should be represented, if possible, in an adequate
cost/performance space. This information should make it possible
to define a performance measure and a cost measure for a
resulting DFPC.

5. External library dependencies

Straightforward

6. Diagnostic capacities

Includes:
e Errors/warnings at runtime (e.g. unexpected datatype,
out-of-range parameter...).
e Log capabilities (e.g. try/catch results written in a log file)
e Output reports (e.g. “if the image is all back...”)
Fault Detection and Identification is the responsibility of the DFN.
However its Recovery (when possible) is made at the DFPC level
and is part of the Orchestrator.

7. Unit test

This must be provided with the code, along with the dataset used
for validation.

7.2.3.2 Towards a Typology/Taxonomy of DFNs

It may be interesting to categorize DFNs, from both a description/documentation point of
view, and mostly from an implementation point of view. Being entirely defined by their input
and output data types, the DFN categorisation naturally induces a categorisation of data

types.

This categorization is yet to be done, and will lead to an object-oriented implementation of

DFNs.

DFN Characterization

A DFN is characterized by:

e A dictionary of Data Fusion implementations (DFI) fitting the DFN definition

e A cost/performance space representation (if possible) of each implementation,
enabling the use to choose which DFI to use (5.)

e A set of validation tests (Added after implementation) (7.)
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DFI Characterization

There can be different implementations of the same Data Fusion Node (e.g. a Visual Point
Feature extractor DFN can be implemented with Harris Features or SURF - though not a
good example actually, as the output data structure are slightly different). The different
implementations are called Data Fusion Implementations (DFI) and characterize the given
DFN.

Each DFl is characterized by:
e Its input parameters (3.)
e |ts external library dependencies (5.)
e |ts diagnostic capacities (6.)

DFN1 DFN2
In1 » + Defined function
« Inputs/Ouput data Outi H * b
+ DFI dictionary : {DFI1,DFI2} 4)- . —————————————— -
+ Cost/Performance representation ] + !
In2 > « Validation test :
_ / \ DFI2
« Inputs parameters + Inputs parameters
« Qutput reports « Output reports
» External libary dependencies + External libary dependencies
« FDIR + FDIR
» Logging States - Errors + Logging States - Emrors

Figure 18: Example of a possible implementations of a DFN

7.2.4 DFPC Description Template

The specification of a DFPC is split into three main parts:

e Data Flow description: this is a purely functional description of the elementary
processes (the DFNs) that compose a DFPC and their relations, seen only from a
data-flow point of view. The goal of this description is to identify the list of required
DFNs to build a DFPC.

e Data Product Management: this part describes the shared data between the DFNs in
the given DFPC, and the interfaces between this data and the various DFNs: memory
calls, data cropping, etc...


https://www.draw.io/#G0Bz49B4IRnFaZWWdYOGdtbnA0cUk
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The section ends with further considerations about the Data Product Management,
which in particular can handle data in-between DFPCs.

Control description: a pure data-flow description is not operational, and in particular
does not depict the sequence and logic of a DFPC. This section proposes a way to
depict the control flow within a DFPC: order in which DFNs are called, DPM access
to shared data, synchronicity of timestamped data... The control flow will be achieved
by the Orchestrator for implementation.

DFPC data flow description

The DFPC data flow provides a layout and ordering of the different DFNSs. It defines:

Inputs/Outputs of the DFPC

Inputs/Outputs of each DFN

DFN types used

Shared data between DFNs: even though data product management is not

represented, it provides data for DFNs as inputs.

Find below example for LIDAR-PG-SLAM:

nnnnnnnnnnnnnnn

Figure 19: LIDAR-PG-SLAM

In this example, all inputs that are provided by DPM and outputs that are inserted in the
DPM are represented with a * after their name.


https://www.draw.io/#G0Bz49B4IRnFaZZVlWZjRZZFNqd28
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7. 3 Detailed Interface among OGs
setCDFFStat [0G2 ->0G3 ([Synch State Initialize, Success,
e idle, reset, Error, invalid
stop States
getCDFFStat |0G2->0G3 |Synch NULL N/A Runtime
e state or
error
getDFPCStat |0G2->0G3 |Synch Type DEM or Pose [Runtime
us state or
error
getRoverMa |0G2 ->0G3 |Synch List of sensor DEM map or |Map
p sensors, names, error state  |produced
accuracy, expected with
update rate, |accuracy information
resolution, [values, gathered by
area of Hz, sensors on
coverage pixel to cm the rover
coverage, itself at the
in sq. mts last sensing
capture
getFusedRov [0G2 -> 0OG3 ([Synch List of sensor DEM map or
erMap sensors, names, error state  |Map
accuracy, expected produced
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update rate, |accuracy with
resolution, [values, information
area of Hz, gathered by
coverage pixel to cm sensors on
coverage, the rover
in sq. mts itself at the
last and
previous
sensing
captures.
getFusedTot [0G2 ->0G3 ([Synch List of sensor DEM map or
alMap Sensors, names, error state Map
accuracy, expected produced
update rate, |accuracy with
resolution, [values, information
area of Hz, from any
coverage pixel to cm sensing
coverage, sources at
in sg. mts any
capturing
time, e.g.
rover,
orbital, other
mobile or
static
devices on
the surface.
getLocalPose [0G2 -> 0OG3 |Synch frame name, (frame string, |Pose + Produces the
List of sensor uncertainty |LocalPose
sensors, names, Pose of the
accuracy, expected BodyFrame
update rate |accuracy in the
values, LocalTerrain
Hz Frame
getGlobalPos [0G2 -> 0OG3 |Synch frame name, (frame string, |Pose + Produces the
e List of sensor uncertainty |GlobalPose
sensors, names, Pose of the
accuracy, expected BodyFrame
update rate |accuracy in the
values, GlobalTerrai
Hz nFrame
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getAbsolute [0G2 ->0G3 ([Synch frame name, |frame string, |Pose + Produces the
Pose List of sensor uncertainty |AbsolutePos
sensors, names, e Pose of the
accuracy, expected BodyFrame
update rate |accuracy in the
values, AbsoluteFra
Hz me
getTargetRel [0G2 -> 0OG3 ([Synch frame name, |frame string, |Pose + relative pose
ativePose List of sensor uncertainty |(3 axes
Sensors, names, position and
accuracy, expected 3 axes
update rate |accuracy attitude) of
values, the target
Hz Body Frame
expressed in
the chaser
Body Frame,
with
associated
uncertainties
getTargetRel |[0G2 -> 0G3 |Synch frame name, [frame string, |twist + relative
ativeVelocity List of sensor uncertainty |speed (3
Sensors, names, axes
accuracy, expected translation
update rate [accuracy speeds and 3
values, axes rotation
Hz speeds) of
the target
Body Frame
expressed in
the chaser
Body Frame,
with
associated
uncertainties
getModelOf [0G2 ->0G3 ([Synch frame name, |frame string, |3D Model This
Target List of sensor interface
Sensors, names, produces the
accuracy, expected 3D model of
update rate [accuracy the target
values, spacecraft.
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Hz
initDFPC Orch -> DFPC|Synch DFPCID DFPC Name |Success,
Error States
stopDFPC Orch -> DFPC [Synch DFPCID DFPC Name |Success,
Error States
getDFPCStat |Orch -> DFPC|Asynch DFPCID, Name, N/A
us Frequency, |Hz,
Callback Function ptr
function ptr
getDFPCPose |Orch -> DFPC |Asynch DFPCID, Name, N/A
Frequency, |Hz,
Callback Function ptr
function ptr
getDFPCDEM |Orch -> DFPC |Asynch DFPCID, Name, N/A
Frequency, [Hz,
Callback Function ptr
function ptr
initICU 0G3 -> 0G4 |Synch NULL N/A Success,
Error States
setOperating |[0G3 -> 0G4 |Synch OpModelD |ID Number |[Success,
Mode Error, invalid
States
selectSensor [0OG3 -> 0G4 ([Synch SensorlD, ID number, [Success,
Configuratio Configuratio |ConfiglD Error, invalid
n niD number States
getOpModeS |0G3 -> 0G4 |Synch OpModelD |ID Number |Runtime or
ensorStatus error states
getStereoCa |DFPC-> 0G4 |Synch NULL N/A Depth map
mDepthMap or error
state
getStereoCa |DFPC-> 0G4 |Synch NULL N/A Disparity
mDisparityM Map or error
ap state
getStereoCa |DFPC-> 0G4 [Synch NULL N/A Point Cloud
mPointCloud or error
state
getStereoCa |DFPC -> 0G4 [Synch NULL N/A Images or
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mlimages error state
getToFPoint [DFPC-> 0G4 [Synch NULL N/A Point Cloud
Cloud or error
state
getIMUData |DFPC-> 0G4 |Synch NULL N/A Linear
acceleration
& angular
velocity or
error state
getLidarPoin |DFPC-> 0G4 |Synch NULL N/A Point Cloud
tCloud or error
state
getlLaserScan [DFPC -> 0G4 |Synch NULL N/A Planar 2D PC
or error
state
getRadarSca |[DFPC -> 0G4 [Synch NULL N/A 2D or3D PC
n or error
state
getHRCamer [DFPC -> 0G4 [Synch NULL N/A Image or
almage error state
getTIRCamer |[DFPC -> 0G4 [Synch NULL N/A Image or
almage error state
getForceTor |DFPC-> 0G4 |Synch NULL N/A Wrench data
que or error
state
getStructure |[DFPC-> 0G4 [Synch NULL N/A Point Cloud
dLightPointC or error
loud state
getStarTrack |[DFPC-> 0G4 [Synch NULL N/A Orientation

erOrientatio
n

data or error
state
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Executive Summary

This document defines the system architecture and the detailed design to implement the
reference scenarios of the planetary track. The system architecture focuses on the
hardware architecture and the allocation of the software in the system, whereas the detailed
design includes the definition of EGSE as well as the software detailed design which will
rely on the CDFF advanced design described in D4.2.

The document addresses 2 reference implementations (i.e. integration and validation
tracks):

e RI-INFUSE: it identifies scenarios at the consortium level whose objective is to
demonstrate and evaluate the full capabilities of the CDFF, from space-compliant to
state-of-the-art algorithms, from traditional to innovative sensors, and possibly
including control in the loop;

e RI-SRC-SR: it identifies scenarios at the SRC Space Robotics level whose objective
is to demonstrate that the CDFF is ready to be integrated with OG1, 0G2, OG4 and
0G6.
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1 Introduction

1.1 Purpose

The purpose of this document is to define the system architecture and detailed design to
implement reference scenarios for the planetary track. The system architecture will mainly
focus on the hardware architecture and the allocation of the software in the system. The
detailed design will include the definition of EGSE as well as the software detailed design
which will rely on the CDFF advanced design described in D4.2.

The document will address 2 reference implementations (i.e. integration and validation
tracks):

e RI-INFUSE: the consortium level, in which the objective is to demonstrate and
evaluate the full capabilities of the CDFF, from space-compliant to state-of-the-art
algorithms, from traditional to innovative sensors, and possibly including control in
the loop;

e RI-SRC-SR: the SRC Space Robotics level, where the objective is to demonstrate
that the CDFF is ready to be integrated with OG1, OG2, 0G4 and OG6.

1.2 Document structure

In brief, the document is structured as follows:
Section 1: This introductory material.

Section 2: Demonstration and validation scenarios. This chapter provides a detailed
description of the scenario that will be implemented in the scope of InFuse.

Section 3: System modeling. This chapter describes the system architecture including
EGSE, simulation tools and InFuse.

Section 4: Detailed architecture. This chapter details the software architecture of data
fusion processing compounds (DFPC). It includes the decomposition of DFPC in data
fusion nodes (DFN) and the corresponding sequence diagram.

Section 5: Detailed design. This chapter covers the software and hardware detailed design.
It describes inputs, outputs and parameters of DFPC and DFN. It describes EGSE involved
testing and validation, both internally to OG3 and with OG6.

Section 6: Conclusion and appendices. This chapter closes the document with a
description of the work done and to pursue. In appendices, we find the template that is
used to describe DFPC and DFN, and the definition of frames.
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1.3 Applicable Documents

AD1  InFuse Grant Agreement
AD2  InFuse Consortium Agreement

AD3 InFuse internal management manual for project partners

1.4 Reference Documents

RD1 [InFuse_D3.1] Infuse Consortium, “Technological Review”, Jan 2017
RD2 [InFuse_D4.1] Infuse Consortium, “Technical trade-offs analysis”, Jun 2017

RD3 [InFuse_D4.2] Infuse Consortium, “Advanced CDFF architecture and ICD”, Jun
2017

1.5 Acronyms

DF: Data Fusion

RCOS: Robot Control Operating System
DFNCI: Data Fusion Node Common Interface
FPGA: Field-Programmable Gate Array

MW: Middleware

Fps: Frames per second

OG: Operational Grant

AHRS: Attitude and Heading Reference System
API: Application Program Interface

CDFF: Common Data Fusion Framework
DEM: Digital Elevation Map

DFN: Data Fusion Node

DFPC: Data Fusion Processing Compound
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DOF: Degree Of Freedom

DPM: Data Product Manager

DSM: Digital Surface Model

EGSE: Electrical Ground Support Equipment
EKF: Extended Kalman Filter

FOG: Fiber Optics Gyroscope

HCRU: Handheld Central Rover Unit
IMU: Inertial Measurement Unit

KLT: Kanade-Lucas-Tomasi

LiDAR: Light Detection and Ranging
OBC: On Board Computer

ORB: Oriented FAST and Rotated BRIEF
PnP: Perspective n-Point

RGB: Red Green Blue

RGB-D : Red Green Blue and Depth

RI: Reference Implementation

ROI: Region of Interest

RTK: Real Time Kinematics

SLAM: Simultaneous Localisation and Mapping
SVD: Singular Value Decomposition
TRL: Technology Readiness Level

ZNCCGC: Zero-Norm Cross-Correlation
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2 Demonstration and Validation Scenarios
2.1 Introduction

The goal of this chapter is to provide a set of use cases and requirements that will drive the
design and implementation of InFuse. For this purpose, we start by describing the
principles of the demonstration and validation strategies selected in InFuse. Considering
this and identified operational scenarios and baseline solutions, we introduce and detail a
set of use cases that will be implemented.

The key principle of the demonstration and validation strategies is to offer a dual approach
that will allow to demonstrate, first, that InFuse is ready for integration at the system level to
implement sophisticated scenarios in the SRC SPACE ROBOTICS; second that expected
performances (ressources consumption; localisation, DEM, fusion accuracy) are met.

The first strategy, depicted in Figure 1, targets online demonstration with an autonomous
rover (or hardware setup) and simulation tools. Simulation is required to prepare the work
for integration with a rover and conduct preliminary evaluations. Thus, first we will work on
the integration of InFuse with a simulator. And as soon as InFuse is operational with the
simulator, we start the integration with a rover. Of course, we might have different
simulators depending on the targeted rovers. The rover should have autonomous navigation
capabilities in order to execute representative trajectories (i.e. relevant rotations and
trajectory shapes). Moreover, it should be capable of using InFuse data products like the
estimated localisation and DEMs. In this demonstration context, the main CDFF part
involved is CDFF-Support which provides the interfaces with OG2 and OG4. The 0G4
sensors and interfaces will be simulated with our own sensors. In some dedicated use
cases, we will target control in the loop and simulate some interfaces and functions of OG2.

ONLINE DEMONSTRATION

Autonomous Rover

CDFF-SUPPORT GROUND STATION
Simulation
Manage CDFF-
Provides sensor data to SUPPORT services
CDFF-SUPPORT (initialise, start, stop,

shutdown)

Provides sensor
management to CDFF-
SUPPORT

Receive CDFF-
SUPPORT data products

0G4 0G2

Figure 1: lllustration of the demonstration strategy. Reminder of the role of OG2 and OG4
with respect to InFuse.


https://www.draw.io/?scale=2#G0B0z2YTf88C8FeEVkU3EybUFWNlE
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The second strategy, depicted in Image 2, targets offline validation and evaluation to qualify
InFuse performances. It will rely on recorded data provided by one or more acquisition
setups like an Autonomous Rover or a HCRU; and possibly simulation tools. In this context,
the main CDFF parts involved are CDFF-Core and CDFF-Dev.

| OFFLINE VALIDATION

Autonomous Rover

CDFF-CORE

database of raw data

Simulation

CDFF-DEV

Figure 2: lllustration of the validation and evaluation strategy.

Three test fields are currently identified for demonstrations or to acquire data. CNES test
field in Toulouse, DLR test field in Munich and a test site in Morocco.

Going to Morocco is a necessity. The EuroPlanet research infrastructure enables tests in a
variety of Mars analogue terrains in Morocco, over large spatial scales, which has nothing
to compare with planetary test fields such as the CNES SEROM or DLR test fields. These
characteristics are necessary to test most of the scenarios addressed by InFuse, which
imply the following functionalities: long range localisation, localisation while returning to
base scenario, absolute localisation using orbital terrain maps.

Besides these obvious considerations, the benefits of deploying two robots on such terrains
are:

e The possibility to gather datasets with an unprecedented completeness, in both the
kind of terrains and sensors. Such datasets will foster future work, for instance on
long range multi-robot setups.

e The thoroughness of the validations, brought be the variety and scale of the
environments

e The impact, both within InFuse and in term of dissemination. Both the datasets and
the obtained results will be publishable in high level conferences and journals (which
is now becoming difficult to do when testing in non-realistic terrains).

e Last (and maybe not least), this goal has already shown to be a highly motivating
one for the involved teams.


https://www.draw.io/?scale=2#G0B0z2YTf88C8FTXRUVy1lTU5zSTg
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The hardware setups, ideally Autonomous Rovers, which will be used for demonstration
and validation, are:

- CNRS/LAAS Minnie and Mana rovers deployed on the CNES SEROM test field and
then in Morocco,
- DLR BB2 and HCRU deployed at DLR,

- DFKI Sherpa possibly with DLR HCRU in Morocco.

Table 1: Table 1 provides a comparison of proposed validation approaches.

Platform

representativeness as a

planetary rover

Test and validation
scope

Indoor / Outdoor (close

vicinity) / Morocco

Closed / Open control
loop

Middleware

OG3 partners
responsible

CDFF coverage

Motivation and benefit

CNRS Mana (+
Minnie)

OG3 internal

I/0/M

Partially closed

GenoM
ROS)

(bridged  with

CNRS + MAG

Full

Extensive test setup

(sensors  wise)  with
partially closed loop
control.

The Mana and Minnie
mobile  robots  from
LAAS will be deployed in
the Morocco outdoor
analog environment with
the same setup (sensors

DLR Exomars BB2
(+HCRU)

0G6

Open

ROS
GenoM)

(bridged with

SPACEAPPS + DLR

Near full (tbc)

Indoor tests in DLR facility
(PEL) is representative of
Martian soil
terramechanics =>
realistic odometry can be
expected.

Furthermore, ground-truth
data is available, which is
useful for the consortium.
Would reuse almost the

DFKI Sherpa

(+HCRU TBC)

0G6

M

Open

ROCK (bridged with

ESROCOS)

DFKI + USTRAT

Partial

Would take benefit from the
Sherpa system in place,
with its own sensors, to test
and validate InFuse in
analogue conditions.

Might be complemented by
the HCRU, if attached to
the Sherpa.

OG3 would bring their own
OBC to run the CDFF, with



Reference : D5.2

O INFUSE o O

Page : 22
D5.2: PLANETARY RI AND ASSOCIATED EGSE DETAILED DESIGN

+ platform) used in OG3 | same CDFF software a ROCK flavor of the CDFF
internal testing. = setup as the CNRS Mana @ (tbc). No extra OG3 sensors
Advantages are - | one (tbc). would be added.

performing data fusion

for long range navigation

in a representative

planetary  environment

and testing the CDFF

with a multi-robot setup.

Potential concerns and | Delta effort to make | Need to equip DLR | Availability of the Sherpa
constraints CNRS' platform rea.ldy Exomars with a select!on ahead of the Morocc.os
for a Morocco campaign | of OG3 sensors allowing | trials, for preparation

should be | to carry out an extensive @ purpose, may be very
accommodated by the @ test campaign. Physical | limited. Risk of interference
consortium. interfacing to be agreed | with OG2.

with DLR, and

implemented (efforts to be

W.rt Mana & Minnie, assessed).
there is a low risk

associated to the

functional capabilities of

the rovers and sensors

as they are in a mature

state and will be tested

internally in OG3 with the

CDFF software. The

additional efforts and

costs associated with

the deployment in

Morocco has to be

analysed.

Table 1: 3 Validation Approaches

After completion of WP4, in which the technical trade-offs analysis yielded the definition of
a series of data fusion functionalities devoted to localisation and environment mapping for
the planetary track [D4.1], we opted to use two robots instead of one:

- One robot will mostly be devoted to vision processes, with two large field of view
stereoscopic benches rigidly mounted on the front and rear of the robot ("a la HazCam",
and a third more resolved and smaller field of view stereoscopic bench mounted on an
2-axes orientable unit on the top of the robot ("a la NavCam"). A polarimetric and a
hyperspectral camera will also be mounted on this unit.

- Another one will mostly be devoted to LiIDAR processes, with a panoramic LiDAR
(Velodyne HDL64 model) mounted on top, and a more precise and more resolved LiDAR
mounted on a single orientable unit in front of the robot (this latter LIDAR having the ability
to deliver multiple echoes).
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The choice of using two robots instead of one has been made by realizing that integrating
this whole sensor suite on-board a single robot was not possible. Furthermore, two robots
will allow the testing of data fusion processes in the multi-robot case, which is one of the
objective of InFuse.

The two platforms are already available at LAAS and fully equipped with a odometry, a high
grade FOG gyro, a 6-axis low cost IMU, and cm-accuracy RTK GPS. Instrumenting the two
robots will be made at no extra cost, as all other exteroceptive sensors are already available
at LAAS (besides the procurement of some additional cameras and lenses, provisioned in
the LAAS InFuse budget).

LAAS and MAG plan to integrate path and itinerary planning processes to demonstrate
some of the scenarios depicted in [D4.1]. The objective is to assess the quality of the data
fusion processes in realistic uses cases, in which the data fusion processes are integrated
within a whole series of parallel processes that are required on-board. The experience of
partners is that such an integration reveals issues that can not be detected (and hence
neither addressed) when processing datasets offline: exploiting data products on-line will
lead to more complete and thorough validation of the data fusion processes, and increase
their TRL.

3 rovers

3 test fields

Figure 3: rover suppliers (but 4 rovers) and 3 test fields are currently identified for testing and
validation of InFuse.

These test fields and rovers will be used to implement the envisioned demonstration and
validation scenarios. Proposed scenarios relies on operational scenarios and baseline
solutions identified in InFuse D3.1 and InFuse D4.1. Each scenario focuses on a specific
operational concept and can be split into several use cases to address the different data
products involved, the various sensors that can be used, or the different data fusion
strategies that can be involved (DFPC). These variations of a DFPC are further detailed in
section 4.1.
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In this document we focus on the planetary track. Related operational concepts are
assumed to be known by the reader, otherwise we invite him to first read InFuse D3.1. We
address the following scenarios :

Long Traverse Localisation,
Long Traverse DEM,

- Rendezvous,

Return to Base.

The long traverse scenario has been split into two scenarios, addressing respectively
localisation and DEM data products. For each scenario we detail a reference
implementation. RI-INFUSE addresses the reference implementation internal to InFuse that
will be done on CNES premises, while RI-SRC-SR addresses the reference implementation
with OG6 and possibly other OGs that will be done on DLR premises or in Morocco.

Discussions are still ongoing at the time of writing, but they tend to converge towards a new
scheme where RI-INFUSE would first be executed at CNES premises and then reconducted
in Morocco, while RI-SRC-SR will address a subset of RI-INFUSE at DLR premises for a
precise evaluation of performances and in Morocco for an integrated demonstration with
OG1 at least.

2.2 Long Traverse Localisation

The objective of the mission for the rover is to autonomously reach a target located about 1
km away, defined by its absolute coordinates. The localisation function is a key element for
the success of the mission. Indeed, localisation data is used by three components of the
system: trajectory control, fusion of navigation maps (or DEM), and localisation of the target
with respect to the rover. It includes the rover pose and its uncertainties.

2.2.1 RI-INFUSE-LONG-TRAVERSE-LOC

The long traverse reference implementation in InFuse will be carried out on LAAS rovers
and on the SEROM CNES site. Its objective is to conduct an online demonstration and
offline validation of the localisation functions proposed in InFuse.

The offline validation will consist in two stages, first data collection, next data exploitation.
The rover will execute a set of trajectories that will be defined later in the project. Each
trajectory will be designed to address different complexity levels depending on the terrain,
the surface type, the rock distribution,...

The online demonstration will consist of the execution of a limited set of localisation
functions that will feed the locomotion system (trajectory control).

The online demonstration might include an autonomous navigation stack to validate the
robustness of the function with respect to rover motions. Nevertheless, the navigation and
locomotion stacks, will only use an RTK-GPS, an AHRS, and possibly wheel odometry to
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implement their localisation function. In an extended demonstration scenario, the RTK-GPS

could be removed and replaced by vision-based localisation.

We propose 4 use cases related to the localisation function to answer to localisation needs

in a long traverse scenario :

2.2.1.1 Package diagram

RI-INFUSE-LONG-TRAVERSE-LOC |

Visual Odometry : this implementation is compatible with current space-grade OBC
and offers fairly good localisation accuracy,

Visual SLAM : this implementation is designed for next generation space-grade OBC
and offers state-of-the-art localisation accuracy,

LiDAR SLAM : this implementation is designed for LiDAR sensors,

Visual / LIDAR SLAM : this implementation explores the complementarity of visual
and LiDAR SLAM.

Rover Locomotion

Position Ground
Truth Measurement

OGS-&lppnrt
—‘ ‘Ground Station
Odometry/SLAM |
DFPC
[ o
Replay
1
Data Logging Data Replay Rover Navigation
Sensor Acquisition
‘smreobench ‘ AHRS ‘ ‘ GPS H Dm‘;’w ‘ ToF Camera ‘ Lidar ‘
Rover Platform Ground Station

Rover

Rover Control Monitoring

Figure 4: Package diagram of the long range traverse scenario.
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The previous package diagram presents a summary of software and hardware elements
foreseen to be required, in addition to the validated DFPC, in order to carry out all use
cases of this reference implementation. The OG3, OG4 and OG6 labels are only specified

here to emphasize the perimeter of the packages. All elements will still be provided by
InFuse or OG6 for this RI.

2.2.1.2 Activity diagram

User GNC Rover Sensors
Turn On Rover Initialize rover Initialize sensors
: Compute
Initialize position G\obalTen")a\nFrame
Initialize Initialize
ization sub: localization sofware
Compute global Get sun sensor Get accelerometers
Attitude value values
Initialize:
localization reference
Start localization
subsystem
Display localisation Updats localization Get gyros sensor | Get accelerometers
data value values
Initialize SLAM Initalize SLAM fniiaize SLAM
Get visual / LIDAR
Start SLAM values
Display SLAM
data Update Ic

Figure 5: Activity diagram of the long range traverse scenario.

It is interesting to see that a localisation subsystem is required and it should be started very
early and independently of the SLAM. The SLAM should update the localisation subsystem.
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2.2.1.3 Expected results

For each of the proposed use cases, while the algorithm is running, we expect the following
interactions with the user :

e related to the final product:
o display the different frames (odometry estimate, ...),
o display the orbital data,
o see uncertainties (features and pose).
e related to the internal state of the DFPC:
o display the feature map build with uncertainties,
o browse images along the executed path : to see what happened in some
points of the trajectory [optional],
o display the DEM used to match orbital data.

Moreover, we want to evaluate the computation time, the memory footprint and the
localisation accuracy (short and long range) of the various solutions, done offline by
replaying data.

The metrics that will be used are the ones proposed in the Kitti Vision Benchmark'.

2.2.1.4 Use Case 1 : Visual Odometry

This use case focuses on visual odometry only. It is the baseline solution for Mars
exploration rovers. The proposed solution should support the following RGB-D sensors :
stereo bench, Kinect, Xtion, TOF + Camera. It includes the following high-level functions :

- Wheel odometry,
- Visual odometry,
- Orbiter map-based localisation.

Additional ad-hoc functions are also required to integrate a full validation and
demonstration chain:

- Sensor acquisition for the RGB-D sensors and odometry,

- Rover navigation and locomotion control loop,

- GPS rover position measurement for ground truth determination,
- User interfaces for live monitoring and visualisation (if applicable),
- Data logging and replay functions,

- Localisation accuracy evaluation tools,

Challenges :

- sensors calibration,

' Andreas Geiger. 2012. Are we ready for autonomous driving? The KITTI vision benchmark
suite. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR)(CVPR '12). IEEE Computer Society, Washington, DC, USA, 3354-3361.
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- versatile solution (sensor support),

- delay management to provide the current estimate while taking into account delayed
estimates,

- map-based localisation.

At least, this baseline solution involving a stereo bench, wheel odometry and visual
odometry shall be demonstrated with an OBC representative of space missions.

2.2.1.5 Use Case 2 : Visual SLAM

This use case focuses on visual SLAM and targets next generation solutions, as it presents
an increased complexity with regards to the first use case. Indeed, the visual SLAM function
will create and maintain a long-term map of the explored terrain, which promises to improve
localisation accuracy, especially if an area is revisited. Also, the map created during a first
pass of the long traverse may be used for map-based localisation in the Return to Base
scenario, to be described in the following chapters. The proposed solution should support
the following RGB-D sensor : stereo bench, Kinect, Xtion, TOF + Camera. It includes
following high-level functions :

- Wheel odometry,
- Visual SLAM,
- Orbiter map-based localisation.

Additional ad-hoc functions are also required to integrate a full validation and
demonstration chain:

- Sensor acquisition for the RGB-D sensors and odometry,

- Rover navigation and locomotion control loop,

- GPS rover position measurement for ground truth determination,
- User interfaces for live monitoring and visualisation (if applicable),
- Data logging and replay functions,

- Localisation accuracy evaluation tools.

Challenges :

- sensors calibration,

- versatile solution (sensor support),

- delay management to provide the most accurate estimate while taking into account
delayed estimates,

- map-based localisation,

- satisfactory accuracy.

2.2.1.6 Use Case 3: LiDAR SLAM

As it was said for Visual SLAM, SLAM represents a next generation of algorithms to be
embedded on space vehicles, enabling the rover to build and maintain a long-term
environment model of its surroundings. The map created by LiDAR SLAM can also be used
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for map-based localisation in the return to base scenario. The proposed solution includes
the following high-level functions:

Wheel Odometry
LiDAR SLAM,
LiDAR Map-based localisation.

The functions required to integrate a full validation and demonstration chain are the same
as the ones for the visual SLAM:

Sensor acquisition for the RGB-D sensors and odometry,

Rover navigation and locomotion control loop,

GPS rover position measurement for ground truth determination,
User interfaces for live monitoring and visualisation (if applicable),
Data logging and replay functions,

Localisation accuracy evaluation tools.

The foreseen challenges are the same as the ones for visual SLAM:

sensor calibration,

versatile solution (sensor support),
map-based localisation,
satisfactory accuracy.

2.2.1.7 Use Case 4: Fusion of LiDAR and Visual Data

Fusion of LIDAR and visual data can be achieved at two different levels:

Directly, by incorporating LiDAR and visual data in the same data structure. With the
defined DFPCs, the sole case of such fusion can be trivially done by the DEM
building DFPC, which takes indifferently as inputs point clouds provided by
stereovision or by a LiDAR. The fusion is here handled by the DEM building DFPC.
Indirectly, by fusing position estimates provided by both kind of sensors. With the
defined DFPCs, such a scheme can for instance be defined for the LIDAR Pose
Graph SLAM DFPC, in which the initial pose at the time of the acquisition of the
LiDAR scans is provided by the Visual Odometry DFPC. The fusion is here handled
by the LiDAR Pose Graph SLAM DFPC.

Note that other indirect schemes could be defined, for instance when exploiting
Visual point clouds to build a DEM using positions estimates provided by LiDAR
SLAM, or vice-versa. Such schemes however do not present a significant added
value,
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2.2.2 RI-SRC.SR-LONG-TRAVERSE

The use cases that will be retained with OG6 will only be a subpart of the use cases already
identified. They will be selected depending on the set of sensors available, the level of
autonomy of the platforms, and the available software interfaces.

2.3 Long Traverse DEM

The objective of the mission for the rover is to autonomously reach a target located about 1
km away and defined by its absolute coordinates, while producing 3 types of DEMs:

- The rover map: this is the map of the surroundings of the rover at each observation
(One rover map is created for one observation). It is attached to the reference frame
of the rover.

- The fused rover map: this is the fusion of rover maps over a given period of time. It
is attached to a local reference frame (site frame).

- The total fused map: this is the fusion of all rover maps to create a complete map of
the robot surrounding. It is attached to the planet’s reference frame, and can be
used in future journeys of the rover.

Those three types of produced maps inside InFuse are necessary for the autonomous
navigation stack to analyse the rover surroundings and plan an optimal and safe trajectory
towards its destination. What is “an optimal trajectory” shall not be discussed here as
different criteria can be considered depending on the need of the mission.

2.3.1 RI-INFUSE-LONG-TRAVERSE-DEM

The long traverse reference implementation in InFuse will be carried out on LAAS rovers
and on the SEROM CNES site. Its objective is to conduct an online demonstration and
offline validation of the localisation functions proposed in InFuse.

The offline validation will consist in two stages: data collection, and data processing. The
rover will execute a set of trajectories that will be defined later in the project. Each trajectory
will be designed to address different complexity levels depending on the terrain (e.g.
surface type, rock distribution).

For each trajectory, the following will be built:
- Rover maps and fused rover maps during trajectory execution, in simulation time,
- Fused total map at the end of trajectory execution, to create the final DEM,

- Localisation of the rover @10Hz w.r.t. the fused rover map, in simulation time.

Those three data products will be tested both with data acquired from a stereo camera
bench and from a LiDAR sensor.

The consistency of the final DEMs can then be compared with the site ground truth
provided by CNES SEROM.
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The online demonstration will consist of two steps: first building rover maps, fused rover
maps and fused total maps over a given trajectory, online, while localizing the rover at
10Hz. The fused total map produced can be then used as an orbiter map for absolute
localization. The execution of the absolute localisation function will feed the locomotion
system (trajectory control).

The online demonstration might include an autonomous navigation stack to validate the
robustness of the function with respect to rover motions. Nevertheless, the navigation and
locomotion stacks, will only use an RTK-GPS, an AHRS, and possibly wheel odometry to
implement the localisation function.

2.3.2 Package diagram

The following package diagram presents a summary of software and hardware elements
foreseen to be required, in addition to the validated DFPC, in order to carry out all use
cases of this reference implementation. The OG3, OG4 and OG6 labels are only specified
here to emphasize the perimeter of the packages. All elements will still be provided by
InFuse or OG6 for this RI.
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RI-INFUSE-LONG-TRAVERSE-DEM |
| | Ground Station
1
DEM Building Absolute
DFPC Localization DFPG Visualtzation Evaluation Tools
. ea oGz
Replay
1
Data Logging Data Replay Rover Navigation
Sensor Acquisition |
Wheel
Stereo bench AHRS LIDAR Odometry
Rover Platform | Ground Station
1 1
Rover
Position Ground Rover Control
Rover Locomotion Truth Measurement Monitoring

Figure 6: Package diagram of the long traverse scenario / DEM building.

2.3.2.1 Activity diagram

In this use case, for the online demonstration, the absolute localisation is performed with
the following steps:

1. At the beginning of the mission, the rover position is initiated by the user
2. The user then initialises:

a. the sensors;

b. the rover navigation and locomotion subsystems;

c. the localisation function:

i.  which sets an initial reference frame, loads the model of fused total
map that serves as an orbital map to localize itself with, and a goal for
the final pose in the target frame.

3. When the user starts the process, the rover begins its traverse:
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a. Sensors data is acquired at a predefined rate;
b. The absolute localisation DFPC uses the data stream as input to estimate a
relative pose;
c. Meanwhile, the user can monitor execution and receive estimated data;
d. The nominal navigation and locomotion cycle uses this pose estimate to
control the movement and trajectory of the robot while avoiding hazards;
4. When the current estimated pose is reached, trajectory execution is stopped and
the process finishes.

The following activity diagram gives an overview of the scenario execution.
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Figure 7: Activity diagram of the long traverse scenario / DEM building.
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2.3.2.2 Expected results

Expected are the following, during the rover traverse:

e Related to the final product:
o Access to the position of the rover in the fused total map frame of reference,
o Computation and evaluation of error after full traverse,
e Related to the internal state of the DFPC:
o Access to the rover map built in order to localize the rover,
o Access to the point cloud provided by either the LIiDAR or the stereoscopic
images.

The computational resources used during the localisation process will also be evaluated.

In order to evaluate the accuracy of the DEM products, a reference DEM will be used and
statistics on the errors computed.

2.3.2.3 Use Case 1: Absolute Localisation

This use case demonstrates both the capability to build DEM and to localize inside a DEM.
Two subcases are possible and will be tested equally: building the DEM using LiDAR data
or building the DEM using a stereoscopic image point cloud.

The proposed solution includes the following high-level functions:

- Wheel odometry
- Rover map building
- Absolute localisation

Additional ad-hoc functions are also required to integrate a full validation and
demonstration chain:

- Sensor acquisition for the camera and inertial measurements,

- Rover navigation and locomotion control loop,

- GPS rover (and target) position measurement for ground truth determination,
- User interfaces for target selection, live monitoring,

- Data logging and replay functions,

- Localisation accuracy evaluation.

2.4 Rendezvous

The global mission objective consists in guiding the rover towards a precise position and
orientation with respect to a man-made asset, e.g. the sample analysis module, for
instance, to perform the transfer of a soil sample. The target is considered non-cooperative,
as there is no direct communication between it and the rover. However, the proposed
localisation algorithms can take advantage of the fact that its general geometry and
appearance are very well known in advance.
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To reach that final goal, we distinguish two mission phases, each with specific operational
requirements and constraints:

- Long-range operations: from mission initialization to an approximate range of 20m.
At this distance, rover sensors cannot resolve sufficient visual features on the target
asset to perform a full relative pose estimation. Therefore, a simple bearing (and
possibly range) tracking is performed and the result is used by the navigation
system to guide the rover towards the general direction of the rover.

- Rendezvous: Once the range is short enough for the sensors to detect geometric
features on the target, the rover switches to a Rendezvous operational mode, and
localisation algorithms capable of giving a full relative pose are activated. The
rendezvous phase lasts until the user-specified relative target pose is reached.

For a simpler validation process, these phases are decoupled in two distinct
implementations : RI-INFUSE-LONG-RANGE-TRACKING and RI-INFUSE-RENDEZVOUS.

2.4.1 RI-INFUSE-LONG-RANGE-TRACKING

The long-range tracking scenario is expected to be validated on the CNES SEROM site with
LAAS rovers. A previously chosen target asset (to be defined) will be placed on the site at a
well-defined position. As with the RI-INFUSE-LONG-TRAVERSE-LOC implementation, both
online demonstration and offline validations will be carried out on several trajectories with
various levels of difficulty.

For offline execution, the baseline predefined trajectory will ensure the target remains within
the field of view of the sensors as the rover approaches. Additionally, various operational
variables, such as illumination direction, occlusions, and the target exiting from the field of
view, can be tested to characterize the algorithm’s performance and working domain.

For online demonstration, we effectively close the loop by using the output of the
long-range target tracking function as a guidance input for the navigation and locomotion
functions. It will thus need to be executed in parallel with the nhominal navigation loop in
order to keep avoiding hazards on the way to the target.

Considering the need is only for a relatively coarse localisation at this stage, we propose a
single type of reference implementation to address it: a camera-based 2D tracking.

2.4.1.1 Expected Results

While the algorithm is running, we expect the following interactions with the user :

e related to the final product:
- display the InFuse localisation output vs GPS output on a map,
- display the estimated target position (bearing and possibly range) on the
map,
- display uncertainties of estimated states.
e related to the internal state of the DFPC:
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o provide the ability to browse images as the rendezvous progresses : to see

what happened in some points of the trajectory,

o display the acquired images with an overlay of the reprojected target

position.

Moreover, we aim to evaluate the computation time, the memory footprint and the final

localisation accuracy.

The localisation accuracy will be evaluated with respect to the distance separating the
target from the chaser. This evaluation will be completed by true / false detection analysis

by using ROC curves.

2.4.1.2 Package Diagram

AI-INFUSE-LONG-RANGE-TRACKING |
Ground Station
1
Target Tracking Target
DFPC Selection Visuallzation Evaluation Tools
o ocz
Replay
1
Data Logging Data Replay Rover Navigation
Sensor Acquisition |
Wheel
Stereo bench AHRS GPS Odometry
Rover Platform | Ground Station
1 1
Rover
Position Ground Rover Control
Rover Locomotion Truth Measurement Monitoring

Figure 8: Package diagram of the long range tracking scenario.
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The following package diagram presents a summary of software and hardware elements
foreseen to be required, in addition to the validated DFPC, in order to carry out all use
cases of this reference implementation. The OG3, OG4 and OG6 labels are only specified

here to emphasize the perimeter of the packages. All elements will still be provided by
InFuse for this RI.

2.4.1.3 Activity Diagram
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Figure 9: Activity diagram of the long range tracking scenario.

2.4.1.4 Use Case 1: Long-range Bearing-only Target Tracking

Since, at the considered range, it is only realistic to accurately estimate the target bearing,
we focus this use case on a simple 2D camera. The target, which is assumed to be static, is
first detected in the image by dense matching, then this bearing measurement is fed into a
classic filtering function which uses a rover motion model to ensure a continuous and
robust tracking. Additionally, the tracking filter would benefit from having access to inertial
measurements of the rover, using it either for a simple state prediction, or as a
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measurement for state correction. Finally, user interaction is needed to initialize the system
by designating the target to be tracked in an acquired image.

The core data fusion implementation thus requires the following high-level functions:

- Dense image matcher,
- Tracking filter.

Additional ad-hoc functions are also required to integrate a full validation and
demonstration chain:

- Sensor acquisition for the camera and inertial measurements,

- Rover navigation and locomotion control loop,

- GPS rover (and target) position measurement for ground truth determination,
- User interfaces for target selection, live monitoring,

- Data logging and replay functions,

- Localisation accuracy evaluation.

2.4.2 RI-INFUSE-RENDEZVOUS

As a precondition detailed in [InFuse_D4.1], the rover is assumed, for this second phase of
the mission, to be already positioned in the vicinity of the target asset.

This phase will also be carried out with the LAAS rovers, on the CNES SEROM site, with a
target to be defined. Once again, several trajectories around the target asset, starting from
the end point of the RI-INFUSE-LONG-RANGE-TRACKING and ending in a position and
orientation suitable for a close-range sample transfer, will be executed manually while the
sensors acquire and log the data for offline validation.

In an online demonstration, the user will specify position and orientation goals for the rover
to reach with regards to the asset and the output of the localisation function will be used by
the navigation function to reach this goal. It will thus need to be executed in parallel with the
nominal navigation loop in order to keep avoiding hazards on the way to the target.

At medium to close range, we can choose relative localisation strategies that make use of
richer RGB-D or point cloud data, such as a stereo bench, a structure-from-motion
arrangement, a ToF camera or a 3D LiDAR, and harness our prior knowledge of the target’s
geometry. We thus propose four potentially complementary use cases to achieve this task:

- RGB-D Model-based detection tracking, which detects and tracks the target using
RGB-D data and combined geometric and appearance-based models;

- LiDAR Model-based tracking, which detects and tracks with pure point cloud data
based on a point cloud model of the target.

- Structure-from-motion reconstructions of the target based only on stereo vision
cameras and the movement of the rover relative to the target,

- Haptic Scanning, for mapping and reconstruction of the target body.
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2.4.2.1 Expected Results

While the algorithm is running, we expect the following interactions with the user :

e related to the final product:
- display the InFuse localisation output compared to GPS output on a map,
- the pose of the rover in the target reference frame and the confirmation that
it accurately reaches the set goal,
- display uncertainties of estimated states,
e related to the internal state of the DFPC:
- provide the ability to browse images as the rendezvous progresses : to see
what happened in some points of the trajectory,
- display the acquired images with an overlay of the reprojected estimated
model pose reprojected.

Moreover, we aim to evaluate the computation time, the memory footprint and the final
localisation accuracy of the various solutions.

The localisation accuracy will be evaluated with respect to the distance separating the
target from the chaser.
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2.4.2.2 Package Diagram

The following package diagram presents a summary of software and hardware elements
foreseen to be required, in addition to the validated DFPC, in order to carry out all use
cases of this reference implementation. The OG3, OG4 and OG6 labels are only specified
here to emphasize the perimeter of the packages. All elements will still be provided by

InFuse or OG6 for this RI.
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Model-based
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1 1
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Rover Navigation Rover Locomeotion Truth Measurement
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Figure 10: Package diagram of the rendez-vous scenario.
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2.4.2.3 Activity Diagram
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Figure 11: Activity diagram of the rendez-vous scenario.
1.

a

At the beginning of the mission, the rover is located in the vicinity of the target,
2. The user initialises:

In this use case, for the online demonstration, the rendezvous is performed in the following
steps (The activity diagram gives an overview of the scenario execution):
which is visible in the field of view of the camera;

b.
c.

the sensors;

the rover navigation and locomotion subsystems;
the localisation function:
i.

which sets an initial reference frame, loads the model of the target, a
goal for the final pose in the target frame.

3. When the user starts the process, the rover begins its rendezvous operation.
a. Sensors data is acquired at a predefined rate;
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b. The model-based localisation DFPC uses the data stream as input to
estimate a relative pose;

Meanwhile, the user can monitor execution and receive estimated data;

The nominal navigation and locomotion cycle uses this pose estimate to
control the movement and trajectory of the robot while avoiding hazards;

ao

4. When the current estimated pose is reached, trajectory execution is stopped and
the process finishes.

2.4.2.4 Use Case 1: RGB-D Model-based Detection and Tracking

This use case focuses on localisation with regards a model of the target which combines
visual features and geometric primitives, such as a CAD model. At close range, the 2D
camera is able to detect and track visual features on the target body. To greatly enhance
tracking performance and robustness, the algorithm can consider a user-provided 3D
geometry (made of simple geometric primitives such as planes and cylinders) into its
rigid-body motion model. However, the filter still needs an initialisation step. In order to
reduce operator intervention, we propose to perform initialisation with a target detector. The
detector uses an offline-trained template of the target and RGB-D measurements to provide
a coarse first estimate of its pose to the tracking function.

The core data fusion implementation thus requires the following high-level functions:

- Model-based target detector,
- Visual feature detector and matcher,
- Model-based 3D tracking filter.

Additional ad-hoc functions are also required to integrate a full validation and
demonstration chain:

- Template training tools based on simulated or real image data,

- Tools for model geometry definition and file generation,

- Sensor acquisition for the camera and inertial measurements,

- Rover navigation and locomotion control loop,

- GPS rover (and target) position measurement for ground truth determination,
- User interfaces for target selection, live monitoring,

- Data logging and replay functions,

- Localisation accuracy evaluation.

2.4.2.5 Use Case 2: Dense Point Cloud Model-based Localisation

This use case focuses on a simple implementation of a LiDAR-backed model-based
localisation scheme. In this case, the target model consists of a reconstructed point cloud
with a density high enough to allow for subsampling. We propose to perform a dense
matching and rigid-body optimization between the acquired point cloud and the
user-provided model. To enable a continuous tracking, pose filtering with a motion model is
also included.
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The core data fusion implementation thus requires the following high-level functions:

- Point cloud matcher,
- 3D pose filter.

Additional ad-hoc functions are also required to integrate a full validation and
demonstration chain:

- Sensor acquisition for the LiDAR and inertial measurements,

- Tools for target point cloud model reconstruction,

- Rover navigation and locomotion control loop,

- GPS rover (and target) position measurement for ground truth determination,
- User interfaces for target selection, live monitoring,

- Data logging and replay functions,

- Localisation accuracy evaluation.

Some challenges about this approach are foreseen, namely the issue of potentially large
resolution differences between the model and acquired point clouds.

2.4.2.6 Use Case 3: 3D Feature Model-based Localisation

This use case focuses on a similar technique of matching and tracking between point
clouds, with the particularity of working at the level of 3D features detected within them.
Again, in this case, the target model consists of a reconstructed point cloud with a density
high enough to allow for subsampling. We propose to first perform 3D keypoint detection
and descriptor extraction in model and measured point clouds, then match these keypoints
together to extract a rigid body transformation. The obtained measurement can then be fed
to a filtering function to enable a continuous target pose estimation.

This use case can be implemented to support point clouds generated from stereo cameras,
ToF cameras or 3D LiDAR sensors.

The core data fusion implementation thus requires the following high-level functions:

- 3D keypoint detector and descriptor extractor,
- Descriptor matcher,
- 3D pose filter.

Additional ad-hoc functions are also required to integrate a full validation and
demonstration chain:

- Sensor acquisition for the inertial and LiDAR or camera measurements,

- Tools for target point cloud model reconstruction,

- Rover navigation and locomotion control loop,

- GPS rover (and target) position measurement for ground truth determination,
- User interfaces for target selection, live monitoring,

- Data logging and replay functions,
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- Localisation accuracy evaluation,

Some challenges about this approach are foreseen, namely the issue of potentially large
resolution differences between the model and acquired point clouds.

2.4.2.7 Use Case 4: 3D Reconstruction from Structure-From-Motion

This use case accomplishes detection of 3D features within a point cloud as in Use Case 3.
However, the point cloud is generated using structure-from-motion methods with stereo
cameras, which allows large-area point clouds to be reconstructed from multiple angles
over time, using the relative motion of the rover and target to build a full model of all sides
of a target from multiple views. While fusing point clouds generated from ToF cameras or
3D LiDAR sensors is possible, we focus on visual-only construction in this use case. Also,
to identify models within the scene that is reconstructed, we use SHOT descriptors and
Hough voting in place of ICP to provide additional control of computational efficiency and
the resolution of keypoints by means of changing the descriptor radius and number of
keypoints.

The core data fusion implementation thus requires the following high-level functions:

- 2D feature detector and descriptor extractor,

- 2D descriptor matcher (FLANN)

- Fundamental matrix calculation from triangulation of points
- Perspective-and-Point solver (RANSAC)

- 3D keypoint detector and descriptor extractor (SHOT),

- 3D descriptor matcher (RANSAC),

- 3D pose filter.

Additional ad-hoc functions are also required to integrate a full validation and
demonstration chain:

- Sensor acquisition for the inertial and camera measurements,

- Tools for target point cloud model reconstruction,

- Rover navigation and locomotion control loop,

- GPS rover (and target) position measurement for ground truth determination,
- User interfaces for target selection, live monitoring,

- Data logging and replay functions,

- Localisation accuracy evaluation,

This approach can also be evaluated for mitigating potentially large resolution differences
between the model and acquired point clouds due to the tuneable SHOT descriptors.

2.4.2.8 Use Case 5: 3D reconstruction and mapping with Haptic Scanning

Haptic Scanning basely consists of taking benefit of information dealing with contacts
established between a robotic manipulator and a target. In the planetary scenarios of
InFuse, haptic scanning is identified as an opportunistic strategy to collect information
about the environment: it is not foreseen to carry out dedicated haptic scanning actions or
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series of actions (e.g. following a certain pattern of scanning along a structure), but rather to
make use of information available while manipulation actions are being carried out, for other
purposes. The assumption is that, when a contact takes place between the manipulator and
a target (artificial or natural structure), a force is measured and is available as a piece of
information. We propose to collect and integrate such contact information into a model,
that will contain sparse, but accurate information on target points positioning (through
information on encoders / kinematic chain of the manipulator) and associated force
information. Such a model, that will translate in an augmented mesh (considering force
information), may potentially be fused with other 3D models of the environment.

Besides an opportunistic usage, it could be envisaged to trigger dedicated haptic scanning
actions (i.e. purposely establishing a contact) to disambiguate depth information in certain
locations where other sensors may have been impaired, for various reasons (e.g. visual
cameras may be dazzled by sun or reflect on shiny surface, Lidars may be misled by
transparent or translucent materials, etc.). This capability may not be a fundamental one,
but may occasionally be relevant, at limited cost. Similarly, in case of a failure with a
primary sensor (Lidar, ToF camera, stereo...), pro-active haptic scanning may help ensuring
that a basic (sparse) model of the environment may nevertheless be built - which may be
useful to take decision and plan paths in a degraded mode, from OG2 / ERGO.

Note that we do not intend in InFuse to develop and provide guidance/control/servoing
capability for a manipulator setup: the haptic scanning approach is considered a data
fusion capability, from the InFuse DFPC point of view. Only opportunistic haptic scanning is
therefore encompassed, not pro-active haptic scanning.

The core data fusion implementation thus requires the following high-level functions:

- Mesh data structure allocators :
- allowing to populate for each position an associated normal,
- allowing to query for each 3d point its associated normal if available,
- 3D Distance query functions
- Triangulation based on measured points

Additional ad-hoc functions are also required to integrate a full validation and
demonstration chain:

- Tools for target point cloud model reconstruction and visualisation,
- End effector force & positions generations

2.4.3 RI-SRC.SR-RENDEZVOUS

The use cases that will be retained with OG6 will only be a subpart of the use cases already
identified. They will be selected depending on the set of sensors available, the level of
autonomy of the platforms, and the available software interfaces.
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2.5 Return to Base

The objective of the mission for the rover is to autonomously execute a trajectory that has
been executed beforehand (e.g. after a long traverse, or after having fetched a sample, or
performed a scientific analysis), but in the opposite direction. The localisation system can
thus benefit from the use of maps created during the first pass and perform a relatively
simpler pose estimation within this map instead of having to create and maintain a new one.

2.5.1 RI-INFUSE-RETURN-TO-BASE

The Return to Base implementation of InFuse will be carried out on LAAS rovers and on the
SEROM CNES site. As with the RI-INFUSE-LONG-TRAVERSE-LOC implementation, an
online demonstration and an offline validation of localisation functions proposed in InFuse
will be conducted.

The offline validation will consist in two stages, first data collection, next data exploitation.
Since this implementation is heavily dependent on the data acquired and produced during
the RI-INFUSE-LONG-TRAVERSE-LOC implementation, we propose to carry out
RI-INFUSE-RETURN-TO-BASE in tandem with this scenario. In this case, the data
collection phase shall be executed immediately after finishing the Long Traverse, by having
the rover perform the reverse trajectory back to the starting point. It may also be relevant to
perform the return trajectory after some time delay, in order to take into account the
changes in illumination conditions that could occur during a typical mission.

The online demonstration could also be executed immediately after the online
demonstration RI-INFUSE-LONG-TRAVERSE-LOC, and will consist in replacing the Long
Traverse localisation function with the map-based localisation function during the reverse
trajectory, feeding the locomotion system, and effectively closing the loop.

In both cases, the LONG-TRAVERSE-LOC implementation must provide a way to save the
SLAM map for reuse in further RETURN-TO-BASE scenarios.

We propose 2 use cases in order to answer to map-based localisation needs in a Return to
Base scenario. Naturally, they follow the 2 types of localisation maps created in
RI-INFUSE-LONG-TRAVERSE-LOC:

e Visual Map-based Localisation : this implementation uses the SLAM map based on
visual features extracted from RGB-D data,
e Point Cloud Map-based Localisation: this implementation is designed for SLAM
maps created using point cloud data.
2.5.1.1 Expected Results
For each of the proposed use cases, while the scenario is underway, we expect the

following interactions with the user:

e related to the final product:
o display the INFUSE localisation output vs GPS output on a map
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o display uncertainties (rover pose).
e related to the internal state of the DFPC:

o browse images along the executed path : to see what happened in some

points of the trajectory [optional].

Moreover, we want to evaluate the computation time, the memory footprint and the
localisation accuracy (short and long range) of the various solutions, done offline by
replaying data. We will use the same metrics as for the long range navigation localisation

scenario.

2.5.1.2 Package Diagram

RI-INFUSE-RETURN-TO-BASE

Truth Measurement

0OG3-Support 0G3-Dev
| Ground Station
Odometry/Map-based
Localisation
DFPC Visualization Evaluation Tools
o om ocz
Replay
1
Data Logging Data Replay Rover Navigation
Sensor Acquisition |
Stereo bench AHRS GPS om'::t' by ToF Camera Lidar
Rover Platform | Ground Station
= Rover
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Figure 12: Package diagram of the return to base scenario.
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This package diagram presents a summary of software and hardware elements foreseen to
be required, in addition to the validated DFPC, in order to carry out all use cases of this
reference implementation. The OG3, OG4 and OG6 labels are only specified here to
emphasize the perimeter of the packages. All elements will still be provided by InFuse or

OGé6 for this RI.

2.5.1.3 Activity Diagram

For the online demonstration, the scenario is performed in the following steps:
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Figure 13: Activity diagram of the return to base scenario.

2.5.1.4 Use Case 1 : Visual Map-Based Localisation

This use case focuses on localisation with regards to a previously-built SLAM map using
visual features, as detailed in_Use Case 2 : Visual SLAM. The basic odometry process is
thus augmented with a local map tracking process for a refinement of the estimated
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position with regards to the map. This process detects keypoints in the acquired image,
and matches them with known keypoints from the map. In order to select relevant
keypoints in the map, two techniques are available: if tracking has been successful in the
previous frame, we simply select keypoints in the closest keyframe. Otherwise, a
bag-of-words matching technique attempts to find the most likely keyframe to extract
keypoints from. After an initial pose estimation, the tracking function extracts keyframes in
the neighbouring frames and performs a full rover pose optimization.

As with the Visual SLAM use case, this solution should support the following sensors:
stereo bench, Kinect, Xtion, and other ToF + RGB camera setups.

This use case includes the following high level-functions:

- Visual feature detection and extraction,

- Wheel odometry,

- Relocalisation: to provide a first pose estimate,
- Tracking: to provide an optimized rover pose.

Additional ad-hoc functions are also required to integrate a full validation and
demonstration chain:

- Sensor acquisition for the RGB-D sensors and odometry,

- Rover navigation and locomotion control loop,

- GPS rover position measurement for ground truth determination,
- User interfaces for live monitoring and visualisation (if applicable),
- Data logging and replay functions,

- Localisation accuracy evaluation tools.

Notably, data logging and replay functions must not only be able to save and restore sensor
data, but also the complete SLAM map created during LONG-TRAVERSE-LOC.

2.5.1.5 Use Case 2 : Point Cloud Map-Based Localisation

In this case we focus on localisation with regards to a previously built map using point
clouds, such as in Use Case 2 : LIDAR SLAM. This use case is symmetric with the visual
map-based localisation: it improves the odometry localisation by matching LiDAR
observation with a previously built LIDAR map, thanks to the LiDAR-SLAM.

This use case includes the following high level-functions:

- Point cloud matching
- Wheel odometry
- Pose estimation

Additional ad-hoc functions are also required to integrate a full validation and
demonstration chain:

- Sensor acquisition for the RGB-D sensors and odometry,
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- Rover navigation and locomotion control loop,

- GPS rover position measurement for ground truth determination,
- User interfaces for live monitoring and visualisation (if applicable),
- Data logging and replay functions,

- Localisation accuracy evaluation tools.

Notably, data logging and replay functions must not only be able to save and restore sensor
data, but also the complete SLAM map created during LONG-TRAVERSE-LOC.

2.5.2 RI-SRC.SR-RETURN-TO-BASE

The use cases that will be retained with OG6 will only be a subpart of the use cases already
identified. They will be selected depending on the set of sensors available, the level of
autonomy of the platforms, and the available software interfaces.

2.6 Requirements

Following the objectives, platforms and scenarios described in this document, a list of
requirements applicable to the Planetary Track reference implementation has been
produced. This list will serve as a tool to evaluate how our final implementation responds to
the expressed needs.

See associated requirements spreadsheet : InFuse_5.2_APPENDIX_REQUIREMENTS.
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3 System Modeling

This chapter addresses the modeling of InFuse, integrated in our validation and
demonstration scenarios. It somehow describes the system architecture including InFuse
EGSE as well as Facilitators, ESROCOS and ERGO products.

The objective is thus to identify all components of the system, their interfaces and
relationships. For this, the architecture corresponding to RI-INFUSE and RI-SRC.SR
scenarios are presented in dedicated sections.

The system is defined as all hardware and software parts that together allows to implement
scenario described in Chapter 2. Depending on the scenario that will be demonstrated, all
parts of the overall system might not be required.

To provide a comprehensive description, we adopt a top down approach. We start by
presenting generic components composing a robotics system, then we list all components
that could be used, and finally we explain how they will be assembled.

3.1 Robotics System

Usually a robotics system is composed of robots, sensors, actuators, on-board computers,
environments, ground stations, communication links and software. In this document we
adopt the following definitions which might change in other contexts.

- robot system : the robot in our case is an exploration rover including all actuators,
sensors, controllers, its on-board computer, batteries and software which together
provide a basic mobile platform that can be controlled in speed and direction,

- sensor system : it includes all sensors that are not included in the robot and which
are required to improve its autonomy, to perform science or to interact with the
environment,

- actuator system : it include all actuators that are not included in the robot and that
are required to improve its autonomy, to perform science or to interact with the
environment,

- on-board computer system : it includes all the processing units except the ones
included in the robots and dedicated to their operation,

- environment system : it includes the environment where the robot will evolve,

- ground station system : it is the set of computers that allow the end-user to interact
with the rover,

- communication link system : it consists of all communications links that are required
by ground stations, on-board computers, sensors, actuators, microcontrollers to
communicate and exchange data,

- embedded software system : it is composed of all the necessary software. It could
be decomposed at a finer functional level like localisation software, navigation
software, etc.
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Figure 14: Components within a generic robotics system

3.2 RI-INFUSE

This section describes the system architecture retained to implement RI-INFUSE scenarios.

3.2.1 System Components

The following system components are part of the InFuse robotics system :

Robot system : The robot system is implemented with two rovers, namely Mana and Minnie
provided by CNRS/LAAS. They should have a mast to mount navigation cameras.

Sensor system : The sensor suite required by RI-INFUSE scenarios includes :

e two RTK-GPS (one per rover),

e two AHRS,

e three stereo benches (one for the navigation on top of a mast NavCam), one
for visual odometry or hazard avoidance (FrontCam), and one for back
hazard avoidance or return to base scenario (RearCam),

e one LIDAR for navigation and localisation.

Actuator system : The actuator suite required by RI-INFUSE scenario includes :
e a pan-tilt turret for autonomous navigation and target tracking (rendez-vous

operation),
e arobotic arm for sample exchange.
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On-board computer system: We want to cover the various categories of processing units
that could be available for space systems from now to 2050 and more, thus we propose :

e LEON 4 FT: this processor is available for space applications,

e ARM CORTEX-A9: this type of processor architecture should soon be
available,

e Xx86: it can be considered representative of future processors,

e Some functions could also be implemented on a FPGA.

Environment system: As presented in the introduction of validation and demonstration
scenario, InFuse will work in following environments :

e SEROM test field in Toulouse,
e DLR PLE test field in Munich,
e Erfoud test field in Morocco.

Ground station system: For now, one ground station per rover is envisaged. They shall be
transportable. Each also includes its own software and user interfaces.

Communication link system: For now, the following communication links have been
identified:

e Wireless communication link between rovers and the ground station,
e Wired communication link between on-board computers,

Embedded software system : The overall software system can be decomposed in 7
sub-systems.

e |Locomotion system : It is responsible for trajectory execution,

e Localisation system : It is responsible for providing the robot pose in
real-time or in the past (short term and long term), and the relative pose wrt a
target,

e Perception system : It is responsible of acquisitions, turret management
(used to make active acquisitions like a panorama or target tracking) and
some low-level processing like stereo-vision,

e Hazard avoidance system : It is responsible for raising alerts when
unexpected objects are detected in the close vicinity of rover,

e Autonomous navigation system : It is responsible for building / fusing dem
and navigation maps, finding and executing a safe trajectory towards a given
goal.

e Autonomous controller system : It is responsible for managing requests from
the ground station and all kinds of events that can arise : errors, hazard
detection, etc.

e Rover state data product manager : It is responsible of tracking the rover
configuration and state : actuator state and status, sensor models, current
localisation, ...
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3.2.2 System Architecture

In order to validate and demonstrate InFuse, DFPCs will be integrated in an existing
Robotics middleware that will allow to use either simulation tools or real rovers. For now,
we focus on the identification of relevant interfaces between systems. Then, depending on
the deployment strategy, the appropriate robotics middleware will be chosen. In order to
simplify the presentation of the architecture, we focus on some key functions in a multiview
approach. We focus on image processing solutions and the same logic can be applied to
process LIDAR data.

3.2.2.1 Visual localisation view

This diagram defines interfaces with the localisation and perception systems in the scenario
of Long Traverse Localisation.

E InFuseRoboticsSystem

I = roverDPM: RoverDPM

51_frontlocCams: FrontLocCam “ServicePorts
[©] GetRoverState: <Undefined>

«ServicePorts
[©] SetRoverstate: <Undefineds

. «DataFlowParts "

esT defined >
©perceptionSystem: PerceptionSysten]
N «ServicePort»
aEson (L «DataFlowPortr GeiRoverSiate: <Undefineds
2| F <Undefined>
'I‘ «IDa’hﬂDanl‘h

processed front images

Hrrdefined: =0 _localisationSystem: LocalisationSysten]

= gyro: Gyro

«DataFlowPorts
Rgbdlmages: <Undefined>

«DataFlowPorts ) “ServicePort»
, L -DataFlowPorts [<] " GetRoverState: <Undefined>
AngularSpeed: <Undefined>

«DataFlowPort»

Acceleration: <Undefined>
«DataFlowPorts
WheelOdometry: <Undefined>

accelero
=) accelero: Acceler

«DataFlowPorts
[—RoverPo

= Umiefined >
execution monitoring = navigationSystem: NavigationSysten|

a ewFort:
Acceleration: <Undefined>

«DataFlowPort»
-»| RoverPose: <Undefined>

trgjectory execution

el System: Loc,

«DataFlowPorts

| RoverPose: <Undefined>
[— “DataflowPorts
¥

wheel odonfitry L [-wiestodomeny:

Figure 15: Visual localisation view

3.2.2.2 Autonomous navigation view

This diagram defines interfaces with the localisation and navigation systems in the scenario
of Long Traverse DEM. The localisation triggers navigation cameras (NavCam) by asking to
the perception system to cover a specific area (either a panorama or a specific area on the
ground). From depth images, it computes navigation maps, possibly by fusing multiple
acquisitions. It plans a path and sends the result to the locomotion system. The current
localisation of the rover is provided by the localisation system.
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Figure 16: Autonomous navigation view

3.2.2.3 Relative Localisation view
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Figure 17: Relative localisation view
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This diagram defines interfaces with the localisation system when relative localisation is
activated. It emphasizes the role of the perception system in the management of turret to
follow a target.

3.2.2.4 Rover Data Product Manager

This diagram defines interfaces with the Rover Data Product Manager system. This allows
to centralise all the rover states and share them with all other systems. Data are exchanged
through services on demand.
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Figure 18: Rover data product manager

To conclude this chapter, we now present two examples of deployment, one for
CNRS/LAAS rovers and the other with the HRCU / SHERPA setup.

For CNRS/LAAS rovers, the sensor, actuator and locomotion systems are in MANA. They
communicate through ROS with InFuse deployed on a dedicated OBC. Finally, the ground
station interacts with InFuse through ROS or another robotics middleware.

The MANA rover can be simulated with MORSE in a transparent way. It will ensure a fluid
transition from the development phase to analog tests.
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CNRS/LAAS (0]: 1@ Ground

MANA/MINI InFuse Station

GENOM ¥ CDFF
inside { SUPPORT

Over Ethernet Over WIF

Figure 19: Deployment of InFuse with CNRS/LAAS rovers.

OBC Ground
InFuse Station

CDFF SUPPORT YARP-/RC m
AHPC/AHN

Over Ethernet Over WIFI

Figure 20: Deployment of InFuse with MORSE simulator.

Moreover, offline processing will be enabled for analysis and benchmarking.

CNRS/LAASM 0OBC

CDFF DEV
ANA/MINI InFuse ENVIRE

RAW DATA

Figure 21: Deployment of InFuse for offline processing.
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For DLR/DFKI setup, the sensor, actuator and locomotion systems are in the HRCU and
SHERPA. They communicate through ROS with InFuse deployed on a dedicated OBC.

Finally, the ground station interacts with InFuse through ROS or another robotics
middleware.

In this setup, stereo vision is computed on board on a FPGA by the HRCU.

DLR (BB2)/
DFKI (SHERPA) 0BC Ground

p InFuse Station
: —

CDFF SUPPORT VARP-/ROS
AHPC/AHN

Over Ethernet Over WIFI

Figure 22: Deployment of InFuse with HRCU and SHERPA.

3.3 RI-SRC.SR

The work has not been done explicitly for RI-SRC.SR scenarios as they are already covered
by RI-INFUSE scenarios. Indeed, RI-SRC.SR is a subset of RI-INFUSE in which less
sensors will be available, loop closure will not be addressed and a different rover system
will be used.

If any major difference appear between the different system architecture, they will be
included in this document.
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4 Detailed Architecture and Design

The goal of this chapter is to expose a first, high-level description of the DFPCs which will
be developed by partners to respond to the scenarios and use cases identified in Chapter
2.

4.1 Flight software : DFPC Architecture and Design

At this level, we are focusing on the architecture of the DFPC. The list of DFNs in each
DFPC, their internal interfaces, and the DFPCs external data interfaces are identified and
described.

Each DFPC description follows the approach detailed in the Technical Note on DFN and
DFPC Specification, included in Appendix 7.3. The DFPC architecture is presented in three
parts:

e Data Flow Description: A functional description of the DFNs that compose a DFPC
and their relations, seen only from a data-flow point of view. The goal of this
description is to identify the list of required DFNs to build a DFPC.

e Data Product Management: A description of the shared data between the DFNs in
the given DFPC, and the interfaces between this data and the various DFNs.

e Control Description: A description of the control flow within a DFPC: the order in
which DFNs are called, DPM access to shared data, synchronicity of timestamped
data. The control flow will be achieved by the DFPC Controller for implementation.
This description takes the form of a sequence diagram.

In addition to this three-step architecture definition of each DFPC, a detailed design
description is also foreseen. This detailed design will present the implementation specifics
of each DFPC for each Reference Implementation, and will include the following elements:

e List of DFNs used

e Definition of the chosen data structures for:
o DFPC-level inputs and outputs,
o Shared data structures between DFNs,
o Data managed by the DPM.

e DFPC-level parameters available to the user.

e For RI-INFUSE, since the CDFF and ESROCOS are not available and operational at
the beginning of the development work, a given DFPC may be implemented with
existing RCOS, middleware and tools. We thus detail:

o RCOS and middleware choice, if applicable,

Implementation of the DFPC Controller,

Alternate data types and structures,

Deployment scheme on the EGSE,

Interfaces with external AHPCs, e.g. sensor acquisition, data display, model

creation.

O O O O
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e Integrated tests to be performed at DFPC level.

This detailed design work is planned to be carried out in parallel with the development of
DFPCs, continuously being updated with the latest design choices.

Table 2: Table 2 presents a summary of all DFPCs to be developed and the partners
responsible for their description and development. Each of the following sections presents
the architecture description of one of these DFPCs.

DFPC Name Partner Responsible
Wheel Odometry LAAS

Visual Odometry - MAG/CNES Magellium

Visual Odometry - LAAS LAAS

Visual SLAM Magellium

Visual Map-based Localisation Magellium
Long-range Tracking Magellium
Mid-range 3D Model Detection Magellium
Mid-range 3D Model Tracking Magellium

Point Cloud Model-Based Localization

USTRATH, Magellium

3D Model Detection and Tracking SPACEAPPS
Haptic Scanning SPACEAPPS
Absolute Localization LAAS

DEM Building LAAS

LIDAR Pose Graph SLAM LAAS

LIDAR Map-based Localisation LAAS
Navigation Map Building Magellium
Pose Fusion LAAS

Table 2: List of DFPCs and partners responsible for each partner
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4.1.1 DFPC: Wheel Odometry

DFPC: WHEEL ODOMETRY )
parameters/data B‘
| in EncoderData: Angle | <<DFN>>
PoseEstimator
in AHRSData : AngularRate in EncoderData:Angle
| g I in AHRS: AngularRate out Pose : Pose
out Pose[]
<<DFN>>
WheelEncoder: EncoderData
<<DFN>>
PoseEstimator
out EncoderData: Anglel : N in EncoderData:Angle
0 »

in AHRSData: AngularRate

out OdoPose: Pose|

A 4

<<DFN>>
AHRS: AHRSData

out AHRSData: AngularRate]

Figure 23: Wheel Odometry Data Flow Description

This figure shows the data flow in that simple DFPC. This DFPC is a core functionality
which will be used by all the following reference implementation scenarios:

RI-INFUSE-LONG-TRAVERSE-LOC
RI-INFUSE-LONG-TRAVERSE-DEM
RI-INFUSE-RENDEZVOUS
RI-INFUSE-RETURN-TO-BASE

This DFPC inputs are :

- Wheel encoder data, with associated metadata
- AHRS sensor data, with associated metadata

The DFPC output is:
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- Estimated rover pose

The DFPC is composed of only one simple DFN that computes the pose from raw data.
This DFPC is conceptually among the simplest ones of the InFuse projet.

4.1.1.1 DFPC Expected Performance

The precision of odometry depends considerably on the type of the traversed terrain, on the
rover locomotion structure and on the executed trajectories. On straight lines executed on
cohesive soils, it can be precisely estimate distances with errors below 1%, whereas on
sloppy sandy areas the estimate distance can be off by a few tens of percent. No reliable
error model not precise performance can be proposed for odometry.

4.1.2 DFPC : Visual Odometry

This set of DFPCs responds to the following reference implementation scenarios:

- RI-INFUSE-LONG-TRAVERSE-LOC
- Use Case 1 : Visual Odometry

Visual odometry, based around a stereo camera, provides an estimate of the pose of the
rover by computing its displacement between two consecutive frames, without any memory
of the frames on a longer horizon. Since it is well tested and understood, and some
implementations already provide good performance on space-compatible targets, it
represents a baseline solution to the Long Traverse scenatrio.

For this DFPC, two different implementations are considered, one from MAG/CNES, and
one from LAAS.

4.1.2.1 Flavor 1: MAG/CNES Visual Odometry Implementation

The following figures detail the DFN component structure inside the DFPC.
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Figure 24: Visual Odometry - MAG/CNES Data Flow Description.

This visual odometry flavor supports a stereo camera, and has already been tested on
space-compliant targets with satisfactory performance.

DFPC Inputs:

- Left and right stereo images with associated metadata
- Rover pose estimated from wheel odometry.

DFPC Outputs:
- Estimated rover pose.
The DFPC will be composed of the following DFNs:

- CNES Stereo Rectification: Performs a rectification of both cameras in the stereo
bench, using their calibration parameters, to prepare for stereo disparity
computation,

- CNES Stereo Disparity: Computes, refines and filters a disparity map from the left
and right rectified images,

- Harris Visual Features Extraction: Detects and extracts Harris corners from the left
image,

- 3D Point Computation: Computes the 3D position of the detected Harris features
from epipolar geometry using the previously created disparity map,
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- Temporal Matching: Efficiently matches the 3D points detected in the current image
with the 3D points of the previous image, using wheel odometry as a prior data.

- 3D Motion Estimation: Efficiently computes a first estimate of the displacement
between consecutive frames from the matched 3D points, using an SVD
decomposition algorithm,

- Point Tracking: Matches features between the previous frame and the current frame
by performing a dense Zero Norm Cross Correlation over their neighbourhoods,

- Motion Estimation: Provides a final pose estimation of the rover pose with a
least-squares optimization of the previously matched features.
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Figure 25: Visual Odometry - MAG/CNES Data Product Management.

Figure 26: Visual Odometry - MAG/CNES Control Description.

4.1.2.2 DFPC Expected Performance

From the literature and consortium expertise, we can state that the localisation accuracy of
a pure visual odometry function is in the order of magnitude of 2% of the travelled distance
in rough terrain. In [MAIMONE2007], authors report an error of approximately 2% in some
cases for MER rovers in ground-based testing conditions. In [SOUVA2008], authors report
an error around 5% without integrating AHRS measurements. In [SUNDERHAUF2005],
authors also report an error of 2% using sparse bundle adjustment.

A localisation error of 2% of the travelled distance is a reasonable target figure for planetary
exploration rovers, knowing that in the KITTI benchmark, that address cityscapes only few
participants reach a performance level below 1%.

The target localisation accuracy is 2% of the travelled distance.
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[MAIMONE2007] Mark Maimone et al., Two Years of Visual Odometry on the Mars
Exploration Rovers, 2007

[SOUVA2008] F. Souvannavong et al., VISUAL ODOMETRY FOR AUTONOMOUS
LOCALIZATION ON MARS, Astra 2008

[SUNDERHAUF2005] Sunderhauf, N., Konolige, K., Lacroix, S. & Protzel, P. (2005). Visual
Odometry using Sparse Bundle Adjustment on an Autonomous Outdoor Vehicle.
Tagungsband Autonome Mobile Systeme, 2005

[KITTI] http://www.cvlibs.net/datasets/kitti/eval odometry.php

4.1.2.3 Flavor 2: LAAS Visual Odometry

This visual odometry flavor supports a stereo camera.

DFPC Inputs:

Left and right stereo images with associated metadata.

DFPC Outputs:

Estimated rover pose.

This DFPC will be composed of the following DFNs:

Stereo Rectification (Optional): In case the input is not rectified, the DFN will perform
a rectification of the two cameras using their relative calibration parameters,
FeatAndSigExtractor: Detects and extracts SIFT visual features from the images,
Feature Matching: This DFN is used twice (with different sets of parameters). Once
for left-right matching, and a second time for t/t+1 (left-left) matching,

3D Point Triangulation: Performs triangulation based on the matches to obtain a set
of 3D points,

(3D-3D) or (2D-3D) Motion Estimation: One of the two DFNs can be used to estimate
motion between two time steps. 3D-3D can use SVD while 2D-3D solves a PnP
problem.

The following figures detail the DFN component structure inside the DFPC.
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Figure 27: Visual Odometry - LAAS Data Flow Description
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Figure 28: Visual Odometry - LAAS Data Product Management
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Figure 29: Visual Odometry - LAAS Control Description

4.1.2.4 DFPC Expected Performance

Expected performances detailed in 4.1.2.1 are applicable here.

4.1.3 DFPC : Visual SLAM

This DFPC responds to the following reference implementation scenarios:

- RI-INFUSE-LONG-TRAVERSE-LOC
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- Use Case 2 : Visual SLAM
It is also implicitly required to implement RI-INFUSE-RETURN-TO-BASE.

The Visual SLAM DFPC extends the concept of Visual Odometry to target next generation
localisation solutions. Indeed, the function creates and maintains a long-term map of the
explored terrain, which promises to improve localisation accuracy, especially if an area is
revisited and a loop closure can be computed.

Since this DFPC performs a rather large and diverse set of functions, it was chosen to
decompose it in a smaller number of higher-level DFNs. This simplifies the DFPC
architecture, but still retains the atomic nature of DFNs, following our definition in Appendix
7.3.

DFPC Inputs:

- Stereo images with associated metadata,

- Depth image with associated metadata,

- RGB Image with associated metadata,

- Rover pose estimated from wheel odometry.

DFPC Outputs:
- Estimated rover pose in map.
The DFPC will be composed of the following DFNs:

- Feature and Signature Extractor: Detects keypoints in the left and right RGB images
and returns associated descriptors. ORB features are proposed for an initial
implementation, but one could opt for a different type while keeping an essentially
identical DFPC architecture,

- Simple Predictor Pose Estimator: Performs a first prediction of the current rover
pose using the odometry estimated pose input and a simple motion model,

- Relocaliser: Attempts to estimate an initial rover pose using 2 alternative methods:

o If tracking has been successful in the previous frame, it matches the current
keypoints with the previous frame’s keypoints and performs a motion-only
optimisation to give a first estimate of the rover pose,

o Otherwise, if tracking has failed, the DFN uses a bag-of-words method to
find the map keyframe which is most likely to be the closest, and if this is
successful, uses a Perspective n-Point method to estimate a new initial rover
pose.

- Loop Closure: Runs in parallel with the rest of the process and uses a bag-of-words
method to attempt to find map keyframes which share a given amount of keypoints
with the current frame. If a closure is detected, it performs an optimization on a
wider window of keyframes, and propagates the correction throughout the whole
map.
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Tracker: From the initial pose estimate given by the Relocaliser DFN, this DFN
selects several more connected neighbouring keyframes and performs an additional

matching step, followed by an full optimization of related keyframes and keypoints.
This DFN produces the final DFPC rover pose output.

- Mapper: Updates the shared SLAM map by adding the current frame and map

points to it, and performing a strict keyframe culling to remove past keyframes
which are identified as redundant according to various criteria.

The following figure details the DFN component structure inside the DFPC.

DFPC: VSLAM-01 /
parameters/data N
o <DFtos <DFN> DN pory-e.
i FeatAndSigExtractor Tracker MAPPER

in leftimage : Image finletimage: Image fn curFeatSig: Frame.
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out CamPose: Poss oransl |

out curFeatSig : Fram out keyFrames: KeyFrey
out CamPose: Pose
in depthimage : Image <<DFN> <<DFN>>
LoopClosure PoseEstimator
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out CamPosePred : Poss
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i rightimage: Image
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Odom : PoseEstimator SimplePredictor : PoseEstimator BOW-LC: LoopClosure G20-MAPPER: MAPPER
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Figure 30: Visual SLAM Data Flow Description
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<<DATA - Shared>>
Map: MapPoints & KeyFrames

MapPoints[] I
<<QUERIER>> <<QUERIER>>
MapPointsQuerier KeyFramesQuerier
in mapPointsindex: int[] in keyFramesindex: int[]
out mapPoints: MapPoints[] out keyFrames: KeyFrame(]
h 4 A
<<QUERIER>> <<QUERIER>>
MapPointsQuerier: KeyFramesQuerier:
in mapPointsindex: int[] in keyFramesindex: int[]
1. Select indexes in MapPoints vector 1. Select indexes in KeyFrames vector
2. Return the corresp. MapPoints 2. Return corresponding KeyFrames
out mapPoints: MapPoints[] out keyFrames: KeyFrame(]

Figure 31: Visual SLAM Data Product Management
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Figure 33: Visual SLAM Control Description

4.1.3.1 DFPC Expected Performance

Expected performances detailed in 4.1.2.1 are applicable here.

4.1.4 DFPC : Visual Map-based Localisation

This DFPC responds to the following reference implementation scenarios:

- RI-INFUSE-RETURN-TO-BASE
- Use Case 1 : Visual Map-Based Localisation

This DFPC, centered around ORB features, partly reuses the Visual SLAM DFPC, however
excluding all DFNs pertaining to map creation and management, as well as loop closure.
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We therefore only aim to localise the rover within a fixed map created previously with the
Visual SLAM DFPC.

DFPC Inputs:

Left and right stereo images with associated metadata,
Depth image with associated metadata,

RGB image with associated metadata,

Rover pose estimated from wheel odometry

Previously created SLAM landmark map.

DFPC Outputs:

Estimated rover pose in map

The DFPC will be composed of the following DFNs:

Feature and Signature Extractor: Detects keypoints in the left and right RGB images
and returns associated descriptors. ORB features are proposed for an initial
implementation, but one could opt for a different type while keeping an essentially
identical DFPC architecture,

Simple Predictor Pose Estimator: Performs a first prediction of the current rover
pose using the odometry estimated pose input and a simple motion model,
Relocaliser: Attempts to estimate an initial rover pose using 2 alternative methods:

o If tracking has been successful in the previous frame, it matches the current
keypoints with the previous frame’s keypoints and performs a motion-only
optimisation to give a first estimate of the rover pose,

o Otherwise, if tracking has failed, the DFN uses a bag-of-words method to
find the map keyframe which is most likely to be the closest, and if this is
successful, uses a Perspective n-Point method to estimate a new initial rover
pose.

Tracker: From the initial pose estimate given by the Relocaliser DFN, this DFN
selects several more connected neighbouring keyframes and performs an additional
matching step, followed by an full optimization of related keyframes and keypoints.
This DFN produces the final DFPC rover pose output.

The following figure details the DFN component structure inside the DFPC.
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Figure 34: Visual Map-Based Localisation Data Flow Description
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<<DATA - Shared>>
Points & Images Maps

Points Images
Map Map

<<QUERIER>>
PointsMapQuerier

in pointsMaplindex: int[]

out pointsMap: PointsMap

<<QUERIER>>
PointsMapQuerier:

in mapindex: intf]

1. Select indexes in points map
2. Return a point map

out pointsMap: PointsMap|

Figure 35: Visual Map-Based Localisation Data Product Management

<<QUERIER>>
ImagesMapQuerier

in imagesMaplIndex: int[]

out imagesMap: ImagesMap

<<QUERIER>>
TarguetPCQuerier:

in imagesMapIndex: intf]

1. Select indexes in images map
2. Return an image map

out imagesMap: ImagesMap
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Figure 36: Visual Map-Based Localisation DFPC Control Description.

4.1.4.1 DFPC Expected Performance

Map-based localisation is a kind of absolute localisation solution as it provides a pose
estimate with respect to past observations. This kind of approach is well known for
autonomous cars in cityscapes, but less common for exploration rovers. In [YEOM2017],
this technology leads to low deviations (= 0.5m) from the planned mission. In [KELLY2017],
authors present the Visual Teach and Repeat (VT&R) system that is capable of
autonomously repeating kilometer-scale routes with centimeter-scale accuracy in rough
terrain, using only monocular vision.

The target localisation accuracy is 0.5m of the closest and detected taught image.
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[YEOM2017] Brian Yeomans and al., MURFI2016 - FROM CARS TO MARS: APPLYING
AUTONOMOUS VEHICLE NAVIGATION METHODS TO A SPACE ROVER MISSION, Astra
2017

[KELLY2017] Clement L, Kelly J, and Barfoot T D. “Robust Monocular Visual Teach and
Repeat Aided by Local Ground Planarity and Colour-Constant Imagery”. Journal of Field
Robotics, special issue on “Field and Service Robotics”, 2017

4.1.5 DFPC: Long-range Tracking

This DFPC responds to the following reference implementation scenarios:

- RI-INFUSE-LONG-RANGE-TRACKING

- Use Case 1: Long-range Bearing-only Target Tracking

It is used to provide a relatively simple bearing-only relative localisation of the target asset
when its distance with regard to the rover is too great to allow for a full pose estimation.
Localisation is performed through tracking, in an RGB camera input, of a visual feature
previously initialized by the user.

DFPC Inputs:

- RGB image with associated metadata,
- Rover attitude from AHRS.

DFPC Outputs:
- Estimated rover pose relative to target.
The DFPC will be composed of the following DFNs:

- User Interface: Provides a way for the user to see the input images and initialize the
position of the target by selecting a ROI within them,

- EKF Prediction: Performs a prediction of the expected position of the target feature
in the image using a rover motion model and the current image timestamp,

- ZNCC Matching: Matches the saved target feature ROI within the new acquired
image,

- EKF Correction: Uses the results of the matching DFN as an observation to update
the filter and compute an estimation of the relative pose of the target with regard to
the rover. This is the DFN which provides the final pose output of the DFPC.

Some architecture choices have been made for this DFPC:

- The ZNCC matcher optimizes a homography to represent feature ROI position in the
input images,
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- The features are represented by a ROI image, a homography with regard to its

source image, and the camera pose of the source image,

- The EKF prediction is separated from the correction in order to support the case
where images are not acquired at a constant frequency. It thus needs a timestamp

input. It returns a predicted homography with regard to the current image,

- We currently propose to use AHRS data in the EKF correction step. However, in a

different implementation, it could be used to perform EKF prediction,

The following figures detail the DFN component structure inside the DFPC, the shared data

structures, and its DFN calling sequence.
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Figure 37: Long-range Tracking Data Flow Description.
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ROIFeatureQuerier EKFStateVectorQuerier
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Figure 38: Long-range Tracking Data Product Management.
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Figure 39: Long-range Tracking Control Description
4.1.5.1 DFPC Expected Performance

Since the long range tracking DFPC only operates in bearing to guide the rover towards its
target, we expect, from benchmarking and litterature figures, the tracking accuracy of the
center of the target to be in the order of magnitude of 1 pixel on the sensor, which would be
sufficient to allow for further rendezvous operations. Tracking rate is expected to be
sufficiently fast to perform autonomous navigation at 1Hz. Another measure of success is

the guarantee that tracking can be successful over the whole approach trajectory.

4.1.6 DFPC : Mid-range 3D Model Detection

This DFPC responds to the following reference implementation scenarios:

RI-INFUSE-RENDEZVOUS
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- Use Case 1: RGB-D Model-based Localisation

The processing compound attempts to detect a known target within its input stereo image
pair and, if successful, returns a coarse estimated relative pose. The detection process is
based on the LINEMOD template detection algorithm, which requires a 3D CAD model of
the target. A training step is first performed offline with the model, and the resulting
template is then loaded by the detection DFN. The template consists in a large database of
the object’s most discriminant features in various modalities, including gradients and
surface normals, from all possible point of views. Each input image is then efficiently
compared to the template, and the function signals a successful detection if the computed
similarity exceeds a given threshold.

As this is only a detection DFPC, we do not include any long term tracking nodes such as a
filter, but instead this DFPC could be used in conjunction with Mid-range 3D Model
Tracking as a pose initialization step.

DFPC Inputs :

- Left and right stereo images with associated metadata.
DFPC Outputs:

- Estimated rover pose with regard to target.
The DFPC will be composed of the following DFNs:

- Stereo Rectification: Performs a rectification of both cameras in the bench using
their calibration parameters,

- OpenCV Stereo Correlation: Computes, refines and filters a disparity map from the
left and right rectified images. Computes the associated depth map,

- LINEMOD Template Detection: Loads the target template and performs a detection
using an input RGB image and its depth map. This DFN provides the final DFPC
estimated target pose signalling a successful detection.

The following figure details the DFN component structure inside the DFPC.
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Figure 40: Mid-range 3D Model Detection Data Flow Description.
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<<QUERIER>>
TemplateModelQuerier
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getTemplate: TemplateModelQuerier

1. Retum reference to template model

out targeiTemplate: Template|

Figure 41: Mid-range 3D Model Detection Data Product Management
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Figure 42: Mid-range 3D Model Detection Control Description

4.1.6.1 DFPC Expected Performance

This DFPC performs detection of a known object and only a coarse first estimation of its
relative pose. Successful detection of the object is determined by verifying that the
estimated pose falls within a given tolerance of ground truth. The final pose estimation
accuracy is then only dependent on the spatial resolution of the trained template (i.e. the
number of discrete angular and linear camera positions used to perform the training). The
higher the number of vertices in the training, the better the accuracy, but with the cost of a
longer computation time.

Performance figures available in the litterature mirror results obtained by benchmarks
carried out during the tradeoff analysis phase. In [HINTERST2012], detection is performed
on a selection of objects with a template trained with a spatial sampling of 15 degrees in
rotation and 10 cm in scale. In these conditions, the target is successfully detected, on
average, between 83% and 93% of the time, with an average rate of 8Hz on a desktop
computer.

Our benchmarks in simulation indicate similar performance, but the spatial sampling of the
training will need to be refined, as the size and range of the target is around an order of
magnitude larger, further impacting the pose estimation accuracy.
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[HINTERST2012] Hinterstoisser, Stefan, et al. "Model based training, detection and pose
estimation of texture-less 3d objects in heavily cluttered scenes." Asian conference on
computer vision. Springer, Berlin, Heidelberg, 2012.

4.1.7 DFPC : Mid-range 3D Model Tracking

This DFPC responds to the following reference implementation scenario:

- RI-INFUSE-RENDEZVOUS
- RGB-D Model-based Detection and Tracking

This DFPC is activated once the rover is close enough for the camera to resolve geometric
features on the target. It is based on the existing VISP Model-based Tracker library, which
is able to track a known 3D target using two types of features (and their combination) :
visible edges and corners, and KLT keypoints. The tracking function is thus adapted for
textured or untextured objects, with visible edges or not.

The target needs to be described with an input CAD model file in order to specify its
geometric primitives. It also already includes its own sub functions such as keypoint
extraction, edge visibility computation, and real-time tracking filter, therefore the DFPC is
quite simple, as it is composed of self-contained DFNs.

DFPC Inputs:

- RGB image with associated metadata.
DFPC Outputs:

- Estimated rover pose with regard to target.
The DFPC will be composed of the following DFNs:

- User interface - Pose Initialization: Displays input images, and provides an interface
for the user to (optionally) click to initialize the target pose,

- VISP Template Tracking: Implements the full tracking chain, with keypoint extraction
and matching, edge visibility computation, and pose estimation. This DFN provides
the final DFPC pose output.

The following figures detail the DFN component structure inside the DFPC.
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Figure 43: Mid-range 3D Model Tracking Data Flow Description
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Figure 44: Mid-range 3D Model Tracking Data Product Management
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Figure 45: Mid-range 3D Model Tracking Control Description

4.1.7.1 DFPC Expected Performance

From tests and preliminary benchmarks performed during the tradeoff analysis, we expect
the tracking accuracy to be affected mostly by scene conditions (e.g. lighting, background),
target geometry, and the approach trajectory. As a comparison baseline, the following
accuracy intervals, with variations due to the environment conditions, have been obtained
with simulated rendezvous sequences (1024x1024 camera resolution, focal length 35mm):


https://www.draw.io/?scale=2#G0B56zoo_GDZqRV0dPdURINTNxOUU
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Table 3: Mid-range 3D Model Tracking Expected Accuracy Figures

Range (m) Position RMS Error (m) Angle RMS Error (deg)
10 0.01 to 0.05 0.01 to 0.02
25 0.1t0 0.5 0.02 to 0.05
50 3.5t06 0.5to0 1

4.1.8 DFPC : Point Cloud Model-Based Localisation

This set of DFPCs responds to the following implementation scenarios:

- RI-INFUSE-RENDEZVOUS

- Use Case 2: Dense Point Cloud Model-based Localisation
- Use Case 3: 3D Feature Model-based Localisation

The general goal of this set of DFPCs is to perform a robust tracking of a known target
described by a point cloud, in data either obtained directly from LIiDAR sensors or ToF
cameras, or computed from stereo camera or mono camera images. The point clouds
should be sampled or resampled to be at similar resolutions but point clouds can be
generated from any of these relevant sensors.

Two distinct, but similar methods are proposed to respond to Use Case 2 and Use Case 3
respectively. The first is a relatively simpler implementation aiming to perform a dense point
cloud matching between an acquired one and the provided model. The second attempts to
make use of 3D features detected within the input point cloud in order to increase matching
performance and robustness. Both methods require that a sufficiently dense point cloud
model of the target is provided in advance by the user.

4.1.8.1 Flavor 1: ICP Point Cloud Matching

In this specific DFPC flavor, we propose a naive implementation of point cloud tracking built
around an EKF with a simple motion model. The measurements are provided to the filter by
performing an ICP matching step between the input point cloud and the provided model.
The ICP algorithm is aided by an initial prediction of the target pose, and the EKF correction
step is enhanced by measurements coming from the rover’s AHRS sensor.

DFPC Inputs:

- Rover attitude from AHRS,
- Point cloud with associated metadata from LiDAR sensor or stereo camera or ToF
camera.

DFPC Outputs:
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- Estimated rover pose with respect to target.
The DFPC is composed of the following DFNs:

- ICP Point Cloud Registration: Using an initial pose estimation, applies an ICP
algorithm to determine the transform that minimizes the distance (euclidean or other)
between 2 input point clouds,

- EKF Prediction: Performs a prediction of the expected position of the target point
cloud using the rover motion model and the current image timestamp,

- EKF Correction: Uses the results of the ICP matching DFN as an observation to
update the filter and compute an estimation of the relative pose of the target point
cloud with respect to the rover. This is the DFN which provides the final pose output
of the DFPC.

Some specific architecture choices have been made when defining this DFPC:

The Kalman filter tracks 12-DOF system states which contains the target pose (6-DOF)
and frame-to frame local velocity (6-DOF). Here we assume a constant velocity motion
model, i.e the frame to frame relative motion of the camera and the target is constant. The
filter inputs: process noise, measurement noise and initial covariance are tracker
parameters and have to be provided by the user. Moreover, the Kalman filter requires initial
states which could be provided by an external means such a detection DFPC. After
reasonable initialization, the filtering rate is obviously higher than actual point cloud
processing time. Hence, the filter latency with low dimensional state vector is not our
concern in this particular case where computational burden is highly related to the
image-based pose estimation.

The EKF prediction is separated from the correction in order to support the case where
images are not acquired at a constant frequency. It thus needs a timestamp input.

We currently propose to use AHRS data in the EKF correction step. However, in a different
implementation, it could be used to perform EKF prediction.
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Figure 46: ICP Point Cloud Matching Data Flow Description
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Figure 47: ICP Point Cloud Matching Data Product Management
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Figure 48: ICP Point Cloud Matching Control Description

4.1.8.1.1 DFPC Expected Performance

Since this is a similar, yet simplified implementation of the SHOT 3D Feature Matching
flavor of this DFPC (see Section 4.1.8.2) working with a complete, dense point cloud, we
expect a lower general accuracy and robustness, but a possible increase in execution rate.
We can thus expect euclidean distance to be below 5% of R, where R is the maximum
operational distance of the camera, and a final angular distance to be below 10°.
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4.1.8.2 Flavor 2: SHOT 3D Feature Matching and EKF

This DFPC is a modified implementation of the 3D reconstruction DFPC specified for the
Orbital Track. This DFPC assumes that an environment point cloud is already available as a
computational results of other DFPCs, and directly performs a 3D descriptor matching on
the provided target point cloud.

A set of three-dimensional keypoints are chosen from both the scene and the model by
picking individual points from the cloud separated by a given sampling radius. Normals are
calculated for these keypoints relative to nearby points so that each keypoint has a
repeatable orientation. The keypoints are then associated with a three-dimensional
descriptor. An example 3d descriptor is SHOT (Signature of Histograms of OrienTations)
descriptors [Salti et al., 2014]. SHOT descriptors are calculated by grouping together a set
of local histograms over the volumes about the keypoint, where this volume is divided into
by angle into 32 spatial bins. Point counts from the local histograms are binned as a cosine
function of the angle between the point normal within the corresponding part of the
structure and the feature point normal. This has the beneficial effects of creating a general
rotational invariance since angles are relative to local normals, accumulating points into
different bins as a result of small differences in relative directions, and creating a coarse
partitioning that can be calculated fast with small cardinality. Additionally, the BOrder Aware
Repeatable Directions algorithm for local reference frame estimation (BOARD) is used to
calculate local reference frames for each three-dimensional SHOT descriptor [Petrelli and Di
Stefano, 2011] to make them independent of global coordinates for rotation and translation
invariance.

Comparing the scene keypoint descriptors with the model keypoint descriptors to find good
correspondence matches is done with a matching algorithm. An example matching
algorithm is the FLANN search on a k-dimensional tree (k-d tree) structure, similar to the
FLANN matching of image keypoints. The results of a matching algorithm is a set of local
matching candidates, that need to be further verified globally upon the overall model, by
means of a correspondence grouping algorithm. One example of correspondence grouping
algorithm is Hough voting that makes recognition of shapes more robust to partial
occlusion and clutter [Tombari and Di Stefano, 2010]. When Hough voting is used,
evidence of a particular pose and instance of the model in the scene is initialized before
voting by obtaining the vector between a unique reference point and each model feature
point and transforming it into local coordinates by the transformation matrix from the local
x-y-z reference frame unit vectors. This precomputation can be done offline for the model in
advance.

For online pose estimation, Hough voting is performed by each scene feature that has been
found by FLANN matching to correspond with a model feature, casting a vote for the
position of the reference point in the scene. The transformation that makes these points line
up can then be transformed into global coordinates. The votes cast are thresholded to find
the most likely instance of the model in the scene, although multiple peaks in the Hough
space are fairly common and can indicate multiple possibilities for model instances. Due to
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the statistical nature of Hough voting, it is possible to recognize partially-occluded or noisy
model instances, though accuracy may be lower.

DFPC Inputs :

- Environment point cloud, representing an area of the world visible by the platform,
- Model point cloud file if model-based ID required (PCD, PLY, A3D),
- [Parameter] Additional optional parameters.

DFPC Outputs:
- Estimated orientation and matching of model in scene.

The DFPC will be composed of the following DFNs, with various flavor options available in
each:

- Point cloud descriptor extraction: to find keypoints in scene and model point clouds,
o Harris 3D detector + SHOT feature descriptors,
- Descriptor matching: to match descriptors between scene and model,
o FLANN descriptor matcher (alternately: RANSAC or brute force matcher)
- Correspondence grouping: to find correspondences between scene and model,
o Hough voting (alternately: ICP or RANSAC)
- Pose estimation calculation,
o Movement averaging (alternately: Extended or Cubature Kalman filter)
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Figure 49: details the DFN component structure inside the DFPC.
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Figure 50: 3D target tracking timing diagram
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4.1.8.2.1 Algorithm Description

A set of three-dimensional keypoints are chosen from both the scene and the model by
picking individual points from the cloud separated by a given sampling radius. Normals are
calculated for these keypoints relative to nearby points so that each keypoint has a
repeatable orientation. The keypoints are then associated with three-dimensional SHOT
(Signature of Histograms of OrienTations) descriptors. SHOT descriptors are calculated by
grouping together a set of local histograms over the volumes about the keypoint, where this
volume is divided into by angle into 32 spatial bins. Point counts from the local histograms
are binned as a cosine function of the angle between the point normal within the
corresponding part of the structure and the feature point normal. This has the beneficial
effects of creating a general rotational invariance since angles are relative to local normals,
accumulating points into different bins as a result of small differences in relative directions,
and creating a coarse partitioning that can be calculated fast with small cardinality. This
method generalizes to the descriptor

Dip)= [ U WSH;J(p)
i=1
(20)
which can also be used for color texture descriptions.

Comparing the scene keypoint descriptors with the model keypoint descriptors to find good
correspondence matches is done using a FLANN search on a k-dimensional tree (k-d tree)
structure, similarly to the matching of image keypoints. Additionally, the BOrder Aware
Repeatable Directions algorithm for local reference frame estimation (BOARD) is used to
calculate local reference frames for each three-dimensional SHOT descriptor to make them
independent of global coordinates for rotation and translation invariance.

Once a set of nearest correspondences and local reference frames is found, clustering of
correspondences is performed by pre-computed Hough voting to make recognition of
shapes more robust to partial occlusion and clutter.

Evidence of a particular pose and instance of the model in the scene is initialized before
voting by obtaining the vector between a unique reference point C" and each model feature
point FM and transforming it into local coordinates by the transformation matrix RV =[L", ,
LY., LY ' from the local x-y-z reference frame unit vectors L" , L, and LY, This
precomputation can be done offline for the model in advance and is performed by
calculating for each feature a vector

Vil - (CY-F) ).

ix=iyrtiz

(21)
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For online pose estimation, Hough voting is performed by each scene feature FS, that has
been found by FLANN matching to correspond with a model feature F™, casting a vote for
the position of the reference point CV in the scene. The transformation RMS_ that makes
these points line up can then be transformed into global coordinates with the scene
reference frame unit vectors, scene reference point st and scene feature vector V°, as

VS LS LS LS VS FS
6= Ljoljyrli gVt

(22)

The votes cast by V°; are thresholded to find the most likely instance of the model in the
scene, although multiple peaks in the Hough space are fairly common and can indicate
multiple possibilities for model instances. Due to the statistical nature of Hough voting, it is
possible to recognize partially-occluded or noisy model instances, though accuracy may be
lower.

4.1.8.2.2 DFPC Expected Performance

Four different tests were performed in the laboratory on image sequences produced from
robotic movement of a camera in equidistant arcs about a 1U CubeSat engineering model
to obtain the scene and model shown in Figure 51.

| Model Scene | -
(reference) | (current) .

Figure 51: High-resolution CubeSat model (left) and scene from sensors (right)

The SHOT descriptor radius and cluster size parameters were varied to test the relationship
of these variables to the resulting matches. Table 4 shows results from these tests.

Table 4. Parameters for 3D model-based tracking

Test Number Number of Number of | Number of | Descriptor | Cluster
Number | of Images | scene features | keypoints | matches Radius (m) | Size (m)
1 220 5584 167 63 0.05 0.1
2 220 5584 632 594 0.1 0.5
3 32 1816 77 28 0.05 0.1
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4 32 1816 77 70 0.1 0.5

The process of reconstruction and tracking was profiled running on the ARM core of a Xilinx
Zynq Z7020 SoC microcontroller (667MHz ARM-Cortex A9). Table 5 shows timing results
(in seconds) for the 3D model-based identification and tracking process®. It can be seen
from this that the majority of time is spent on keypoint production and FLANN search during
the identification and tracking process.

Table 5: Timing Results for 3D model-based tracking

Model Scene Model Scene Model Scene FLANN . TOTAL
Test . . . . Clustering

Normals Normals Sampling Sampling Keypoints Keypoints @ Search (s)
1 0.17 0.15 0.027 0.020 1.26 0.84 107.7 0.92 112.1
2 0.17 0.15 0.029 0.024 3.37 2.19 118.0 2.00 127.2
3 0.17 0.043 0.031 0.0083 3.31 0.37 42.5 0.63 48.4
4 0.17 0.041 0.031 0.0078 3.31 0.37 42.6 1.36 491

The accuracy of ego-motion estimation (effectively the tracking of the relative position of
the target) during the tracking process was additionally profiled using another test using a
3U CubeSat engineering model, shown in Figure 52. Figure 53 shows plots of the pose
estimation accuracy in translation and Figure 54 in rotation. The total RMS error in
translation was 7mm in X, 8mm in Y, and 7mm in Z. The total RMS error in rotation was
0.14rad about X, 0.11rad about Y, and 0.19rad about Z.

Figure 52: 3U CubeSat model (left) and match with scene (right)

2 M.A. Post, J. Li, C. Clark, X. Yan. “Visual Pose Estimation System for Autonomous Rendezvous of
Spacecraft”. ESA Astra 2015: 13th Symposium on Advanced Space Technologies in Robotics and
Automation. ESA/ESTEC, Noordwijk, the Netherlands, 11-13 May 2015.
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Figure 53: Tracking accuracy of 3U CubeSat model in translation
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Figure 54: Tracking accuracy of 3U CubeSat model in rotation

Some initial estimates of pose estimation accuracy under partial occlusion of a 3U CubeSat
target were also performed. Shadowing the target by 25% resulted in an additional ~1%
error in translation and ~2% error in rotation, shadowing the target by 50% resulted in an
additional ~7% error in translation and 3% error in rotation, and with 75% shadowing no
correspondence with the model was found.

From the testing results given, initial parameters for the DFPC are suggested as follows:

Descriptor Radius and Cluster Size should be a fraction (1%-10%) of the size of the
object to be detected

Descriptor Radius and Cluster Size should be the same order of magnitude
Descriptor radius may be tuned to improve the speed of the descriptor selection
Cluster size may be tuned to increase the speed of the matching process

The model point density should be no more than one order of magnitude different
from the scene point density (subsampling is possible)

Expected performance in general cases for this DFPC are shown below.

Test Reference Output Measure
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Object Detection | Ground truth | Estimated object pose | euclidean distance and
object pose angular distance less than
1% of R, where R is the
maximum operational
distance of the camera.

4.1.9 DFPC : Absolute Localisation

This DFPC responds to the absolute localisation from orbital data objective expressed in
the implementation scenario :

- RI-INFUSE-LONG-TRAVERSE-DEM.

This processing compound provides a pose estimate of the rover in the orbital image frame,
using orbital imagery, a DEM generated by the rover and an orthophoto also generated by
the rover. The dual type of data is used to ensure good performances in rocky or outcrop
areas. In presence of outstanding rocks, matching can be performed through rock
extraction in the DEM. Whereas, in presence of outcrops a keypoint extraction and
matching procedure can also be applied.

Rover stereo imagery HiRISE satellite imagery
4 v
3D mappin
pping Image enhancement and
; l ] noise removal
3D point cloud Orthophoto
‘ !
Rock extraction ‘ Keypoint extraction ‘ Rock extraction ‘ ‘ Keypoint extraction

l I

Feature extraction with outlier detection

A

Rover localization within HiRISE imagery through similarity transformation

Figure 51: Diagram of Absolute Localization DFPC. HiRISE represents the orbital imagery
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The DPFC’s inputs are the following:

- Point cloud for rover DEM generation, and associated metadata.
- Orthoimage produced by the rover, and associated metadata.
- Orbital image and associated metadata.

The DFPC’s output is the following:
- Pose estimate in the orbiter map frame of reference.
The DFPC is composed of the following DFNs:

- PCTransform: Enables the transformation of a given point cloud in a given frame of
reference, of which we know the transform. This is used to transform the LIDAR
point cloud in the fused map frame of reference,

- Rasterizer: Transforms the point cloud into a Rover map by projecting points. Each
layer of the raster contains information on the Rover map,

- FeatureExtraction: Extracts relevant points of interest in both the rover map and the
orbiter map. Those points of interest are related to peaks of altitude in the elevation
map or to visual features in the case of the orthoimage,

- FeatureMatching: Matches features extracted from the rover map and the orbiter
map,

- PoseEstimator: From the feature-matching DFN, this DFN computes the pose of the
rover in the orbiter map frame of reference.

The orbiter input map is considered to have the characteristics of the best maps currently
produced by the Hirise instrument on-board Mars Reconnaissance Orbiter: DEM resolution
of the order of 1.0m and elevation precision of the order of 0.1 m, and orthoimage
resolution in the visible spectrum of the order of 0.25m.

The following figure details the DFN component structure inside the DFPC.
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Figure 52: Absolute Localization DFPC Data Flow Description
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Figure 53: Absolute Localization DFPC Data Product Management
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Figure 54: Absolute Localisation Control Description
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4.1.9.1 DFPC Expected Performance

The proposed approach from [DI2011] shows tests performed on MER data for localization
near the respective (MER-A and MER-B) landing sites. It presents a RMS error of less than
one pixel on average, which are sampled at 0.25m resolution. However, the algorithm uses
SIFT features, which are far more reliable in terms of scale invariance, while it is not clear
yet if an alternative keypoint may yield comparable performances. In terms of computation
time, a time between 1 and 3 minutes should be expected. Note that this is an acceptable
processing speed as the method is not expected to be run onboard in real time.

The target accuracy is set at the equivalent in meters of 1-2 pixel, depending on the
resolution of the orthoimage.

[DI2011] K. Di, Z. Liu, and Z. Yue, “Mars Rover Localization based on Feature Matching
between Ground and Orbital Imagery,” Photogrammetric engineering and remote sensing,
vol. 77, no. 8, 2011.

4.1.10 DFPC: DEM Building
This DFPC responds to the DEM building objective expressed in the implementation
scenario :

- RI-INFUSE-LONG-TRAVERSE-DEM.

This processing compound builds a Digital Elevation Map (DEM) from point clouds provided
by LIDAR or stereoscopic imaging sensors.

The DPFC’s inputs are the following:

- LIDAR or stereo point cloud, and associated metadata
- Pose estimate from the Data Product Manager (DPM), and associated metadata

The DFPC’s output is the following:
- Fused Rover Map: the DEM built from the start of the rover trajectory.
The DFPC is composed of the following DFNs:

- PCTransform: Enables the transformation of a given point cloud in a given frame of
reference, of which we know the transform. This is used to transform the LIDAR
point cloud in the fused map frame of reference,

- Rasterizer: This DFN transforms the point cloud into a Rover map by projecting
points. Each layer of the raster contains information on the Rover map.

- Map builder: This DFN integrates the Rover Map inside the Fused Rover map

- The following figure details the DFN component structure inside the DFPC.
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Figure 55: DEM Building Data Flow Description
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Figure 56: DEM building DFPC Data Product Management
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Figure 57: DEM building DFPC Control Description
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4.1.10.1 DFPC Expected Performance

As DEM does not feature stochastic processes, the introduced error is only dependent from
the sensor noise and an eventual downsampling for memory/computation constraints.
Given a target platform composed as follows:

CPU : Intel Core i7-6700HQ @ 2.60GHz
RAM : 16GB DDR4

the expected run time and memory usage for delivering one scan DEM of 120x120 meters
with a resolution of 0.1m per cell are:

DFPC Input type Single thread - | Single thread — CPU
Memory in MB time in ms

DEM Building Posestamped point | 18 <500
clouds

Of course the memory usage can be affected by many factors such as size and resolution
of the map, data encoding and, number of exported layers.

4.1.11 DFPC: Lidar SLAM

This DFPC responds to the LIDAR mapping objective expressed in RI-INFUSE-LONG-
TRAVERSE-LOC, Use Case 3: LIDAR SLAM.

This processing compound simultaneously builds a environment model composed of a
series of LIDAR point clouds and provides pose estimates for the rover.

The DPFC'’s inputs are the following:

- LIDAR point cloud, and associated metadata,
- Pose estimate from wheel odometry (or the DPM) and associated metadata.

The DFPC’s outputs are the following:

- Pose estimate of the rover in the pose-graph frame of reference,
- Pose graph: an environment model containing keyframes associated to successive
poses.

The DFPC is composed of the following DFNs:

- PCMatcher: Matches two point clouds and gives a percentage of overlap and the
transformation between the point clouds. The most common PCMatcher is ICP. It
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will be used two times: once to decide if the current point cloud should be added to
the pose graph, and once to decide if the current point cloud calls for a loop
closure.

MapBuilder: This DFN is in charge of adding keyframes inside the pose graph,
depending on different criteria. It is also used twice: once in case a keyframe is
added in the pose graph, and once when a loop is closed.

MapOptimizer: This DFN is in charge of optimizing the graph when a loop is closed
by the rover.

The following figure details the DFN component structure inside the DFPC.

nnnnnnnnnnnnnnn

Figure 58: LIDAR-SLAM Data Flow Description
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Figure 59: LIDAR-SLAM-DFPC Data Product Management
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Figure 60: LIDAR-SLAM DFPC Control Description

4.1.11.1 DFPC Expected Performance

A localisation error is applicable to LIDAR-based SLAM. From previous benchmarks we can
reasonably expect a translation error which is set around 2% of the travelled distance (path
length), with a standard deviation of +/- 1% [MEND2011]. Nonetheless, the environment
shall allow the localisation process, i.e. being sufficiently rich in features such as rocks,
boulder, etc.

The target rotation error is set at 0.04 deg/m.

[MEND2011] Mendes, Ellon Paiva. "Study on the use of vision and laser range sensors with
graphical models for the slam problem." PhD diss., Institut National des Sciences
Appliquées de Toulouse (INSA Toulouse), 2017.

4.1.12 DFPC : Lidar Map-based Localisation

This DFPC responds to the LIDAR mapping objective expressed in
RI-INFUSE-LONG-TRAVERSE-LOC, Use Case 3: LIDAR SLAM.

This processing compound provides a pose estimate for the rover, considering a previously
built LIDAR Pose-GRAPH (with the help of LIDAR-SLAM, described above).
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The DPFC’s inputs are the following:

- LIDAR point cloud, and associated metadata
- Pose estimate from the Odometry (or the DPM) and associated meta data

The DFPC’s outputs are the following:
- Pose estimate of the rover in the pose-graph frame of reference
The DFPC is composed of the following DFNs:

- PCMatcher: Matches two point clouds and gives a percentage of overlap and the
transformation between them. The most common PCMatcher is the ICP,

- PoseEstimator: Once the matching is performed between the LIDAR observation
and the graph, a pose is estimated in the Graph frame of reference.

The following figure details the DFN component structure inside the DFPC.
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- in refPC: PointCloud in Overlap: Percent oul FoverPose: Pose
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Figure 61: LIDAR Map-based Localization Data Flow Description
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Figure 62: LIDAR map-based localization Data Product Management
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Figure 63: LIDAR Map-based Localisation Control Description

4.1.12.1 DFPC Expected Performance

The error on the localisation produced by this DFPC has two sources:

- The precision of the localisation with respect to the Lidar Pose-Graph map
- The precision of the localisation of the Lidar Pose-Graph map itself.

The precision of the localisation with respect to the Lidar Pose-Graph map is expected to
be of the order of a few cm in translation, and below 0.5 degree in orientation. This
precision depend strongly on the type of environment that is mapped.

The precision of the Lidar Pose-Graph map inherits the precision of the SLAM process that
builds it: the map localisation precision depends on its distance with respect to the starting
point - see expected performance of the LIDAR SLAM DFPC.

4.1.13 DFPC: Navigation Map Building

This DFPC responds to the reference implementation scenarios described in :

RI-INFUSE-LONG-TRAVERSE-LOC
- Use Case 1 : Visual Odometry,
- Use Case 2 : Visual SLAM,
- Use Case 3 : LiDAR SLAM.
- RI-INFUSE-LONG-TRAVERSE-DEM
- RI-INFUSE-LONG-RANGE-TRACKING
- RI-INFUSE-RENDEZVOUS
- RI-INFUSE-RETURN-TO-BASE
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- Use Case 1: Visual Map-based Localisation
- Use Case 2: Point Cloud Map-based Localisation

This DFPC is an essential part of multiple implementation scenarios, as it is required to
enable a safe autonomous rover demonstration. Indeed, the navigation maps produced by
this DFPC will be used to plan and guarantee a safe path for our rovers within the chosen
experimentation terrain.

Our implementation leverages existing CNES assets, and will attempt to extend their
capabilities to continuous operation, as opposed to a stop-and-go approach which was
required until now.

DFPC Inputs :

- Left and right stereo images with associated metadata.
DFPC Outputs:

- Navigation Map.
The DFPC will be composed of the following DFNs:

- Image Radiometric Correction: Depending on input parameters, applies various
operations on input images such as normalisation, thresholding, vignetting
correction, etc,

- Image Geometric Correction: Using provided intrinsic and extrinsic camera
calibration parameters, perform a geometric correction by correcting distortion and
rectifying input images to prepare for stereo disparity computation,

- CNES Stereo Disparity: Computes, refines and filters a disparity map from the left
and right rectified images,

- Build DEM,

- Fuse DEM,

- Build Navigation Map,

- Fuse Navigation Map.
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Figure 64: Navigation Map Building Data Flow Description
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Figure 65: Navigation Map Building Data Management
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Figure 66: Navigation Map Building Control Description

4.1.13.1 DFPC Expected Performance

A typical way of evaluating the global performance of the navigation map building function
is to compare the ratio of the travel distance of the reference trajectory obtained with an A*
algorithm applied to the ground truth DEM of the test area, and the planned trajectory
which is autonomously executed by the rover using the navigation DFPC. The obtained
ratio can be under 100% (executed distance > reference distance), and this behavior is
expected, as the A* algorithm is optimal. A ratio under 100% is also possible, as the A*
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algorithm is optimal for its cost function, but does not necessarily produces the shortest
path.

The final performance of the algorithm is obviously dependent on the type of terrain, the
trajectory goals and the complexity of the path. Previous experiments on the CNES mars
yard allow us to determine expected performance figures for this criterion:

Table 4: Typical performance ratio for the navigation map building function

Value

Min ratio 70%
Max ratio 110%
Mean 90%
Median 90%
Stdev 10%

4.1.14 DFPC: Path Planning

This DFPC will be a wrapper over CNES assets. It is presently relevant mainly to implement
demonstration and validation scenarios.

4.1.15 DFPC: Pose Fusion

This DFPC is the part of the DPM that manages the poses (Position Manager DFPC, see
section 8.4).

4.1.16 DFPC : 3D Model Detection and Tracking

This DFPC responds to the following reference implementation scenarios:

- RI-INFUSE-RENDEZVOUS
- Use Case 1: Model-based Localisation
- Use Case 2: Dense point-based Localisation
- Use Case 3: 3D Feature Model-based Localisation

This DFPC will support the detection and tracking of known rigid deformable objects. A
robotic arm with multiple joints is such an object. An object with broken or missing parts
will also be dealt in this DFPC. This DFPC is intended to be used on close range
applications.

The detection process will be based on the following graph :
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Figure 67: 3D Model Detection and Tracking Process

The detection process is based on a multi-criteria algorithm. The first part of the algorithm
will clean the data points, the second part will execute a series of classical image
processing algorithms, the last part will weight the results from the previous pass into the
decision algorithm.

DFPC Inputs :

- Point cloud with associated metadata from LIiDAR sensor or stereo camera or ToF

camera.

- Estimated rover pose relative to target.

DFPC Outputs:

- Target object ID

- Estimated Target pose with regard to Rover.
The DFPC will be composed of the following DFNs:

- Background learning : removes static data from the input
- Filtering : Will remove noise and outliers from the input data

- Depth Normalisation : normals are extracted from data
- World Transformation : will if available apply estimated ROV pose to the input data
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4.1.16.

Voxelization : will bin input data in a sparse data structure for easier manipulation
and also create a point cloud

K-means : will segment the point cloud

Feature Extraction : will use SURF feature to generate regions of interest

Edge Generation : will extract edges present in the pointcloud

Primitive Matching : will match various planes and ellipses to segmented regions
Weighting Expert : this multicriteria DFN will accept previous results and follow a
voting scheme to generate most plausible pose estimation about subparts, e.g. the
gripper, the elbow and the base of an articulated arm.

Fitting Levenberg Marquardt : will fit classified results of known subparts into
possible known objects.

1 DFPC Expected Performance

The target platform is a standard computer made of :

CPU : Intel Core i7-6700HQ @ 2.60GHz

RAM : 16GB DDR4 - 15-15-15

From these hypothesis the expected run time are :

DFN Input type Single thread | Single thread — CPU
— Memory in | time in ms
MB

Background learning | 2D array (640*480*8bit) 1 1

Filtering 2D array (640*480*8bit) 1 1

Depth Normalisation | 2D array (640*480*8bit) 1 1

World 2D array (640*480*8bit) 1 <1

Transformation

Voxelization 2D array (640*480*8bit) 1 1

K-means 2D array (640*480*8bit) 2 1

Feature Extraction 2D array (640*480*8bit) 7 1
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Edge Generation 2D array (640*480*8bit) 2 1

Primitive Matching Octomap: 307 000 points | 20 2

Weighting Expert Octomap: 307 000 points | 20 Remaining Time
Fitting Levenberg | Octomap: 307 000 points | 20 6

Marquardt

TOTAL 66 16.66 (~ 60fps)

4.1.17 DFPC : Haptic scanning

This DFPC responds to the following reference implementation scenarios:

- RI-INFUSE-RENDEZVOUS
- Use Case 1: Model-based Localisation

This DFPC will support the scanning of objects by using a force measuring sensor. This
DFPC is intended to be used on close range applications, and will complement 3D imagery
devices. The detection process is based on a force profile algorithm coupled with
odometry.

For this DFPC, a robotic arm with 7 degrees of freedom is foreseen to be used.
The detection process will only gather data without requiring arm to be actuated.
DFPC Inputs :

- Desired end-effector position
- End-effector force measurements
- Estimated rover pose relative to target.

DFPC Outputs:
- 3D point cloud representing touched shapes
The DFPC will be composed of the following DFNs:
- Octomap generator : Will merge force normals data into a spatial representation

- Force Mesh Generator : Will exploit the octomap data to generate meshes
representing touched objects.
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4.1.17.1 DFPC Expected Performance

The target platform is a standard computer made of :
CPU : Intel Core i7-6700HQ @ 2.60GHz
RAM : 16GB DDR4 - 15-15-15

From these hypothesis the expected run time are :

DFN Input type Single thread - | Single thread - CPU
Memory in MB time in ms
Force Mesh Generator |cartesian Pose <1 <1
TOTAL 1 >1000fps

4.1.18 DFPC : 3D Reconstruction

This DFPC responds to the following reference implementation scenarios:

- RI-INFUSE-RENDEZVOUS
- Use Case 1: Model-based Localisation

This DFPC is used for the reconstruction of an environmental point cloud as a preliminary
step for model detection.

DFPC Inputs :

- Stream of mono camera images OR Stream of stereo camera images OR stream of
point cloud from 3D Lidar OR stream of point clouds from ToF cameras
- Sensors parameters

DFPC Outputs:

- 3D point cloud representing the environment
- stream of camera poses with respect to the first camera pose.

The DFPC will be composed of the following DFNs:

- Image filter (like undistortion filter);

- 2d Features Extractor (like Orb detector, or Harris detector);
- 2d Features Descriptor (like Orb Descriptor);

- 2d Features Matcher (like Flann matcher);
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- Fundamental Matrix Computation (like Ransac based estimation);

- Camera Pose Estimation from fundamental matrix (like decomposition of the
essential matrix)

- Triangulation of 2d correspondences.

4.1.18.1 Algorithm Details

Due to the complexity and the number of algorithms used in the 3D Reconstruction DFPC,
a detailed description of the algorithms is provided as follows.

4.1.18.1.1 Feature Matching

We use ORB (Oriented FAST and Rotated BRIEF) point descriptors for 2-D feature
matching. First, a method of keypoint detection must be used to obtain keypoints from a
sequence of images. The FAST keypoint detector (Features from Accelerated Segment
Test) is frequently used for keypoint detection due to its speed, and is used for quickly
eliminating unsuitable matches in ORB. Starting with an image patch p of size 31x31, each
pixel is compared with a Bresenham circle centred on that point (built 45 degrees at a time
by ). The radius of the surrounding circle of points is nominally 3, but is 9 for the ORB
descriptor, which expands the patch size and number of points in the descriptor. If at least
75% of the pixels in the circle are contiguous and more than some threshold value above or
below the pixel value, a feature is considered to be present. The ORB algorithm introduces
an orientation measure to FAST by computing corner orientation by intensity centroid,
defined as

mOO 00,

_| 1o _o1 - g
C= y | where m Expy I(x,y).

¥\

(1)

The patch orientation can then be found by . Since the FAST detector does not produce
multi-scale features, a Harris filtered scale pyramid is used to compare several scales of
features.

4.1.18.1.2 ORB Keypoint Description

The feature descriptor provided by BRIEF is a bit string result of binary intensity tests T,
each of which is defined from the intensity p(a) of a point at a relative to the intensity p(b) at
a point at b:

1:p(a)<P(b)}
tp;a,b)= { 0:0la)2nlb)

and
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flpl= > 2 (psa,b).

(3)

BRIEF descriptors can be referred to as BRIEF-k, where k is the number of bytes needed to
store the descriptor. The descriptor is very sensitive to noise, so Gaussian smoothing is
applied to the image patch that the descriptor acts on. The more smoothing, the more
matches can be obtained. Also, the basic BRIEF descriptor falls in accuracy quickly with
rotations of more than approximately 10 degrees. To make BRIEF invariant to in-plane
rotation, it is steered according to the orientations computed for the FAST keypoints. The
feature set of points (a,b) in 2xn matrix form is rotated by multiplication by the rotation
matrix R, corresponding to the patch orientation © to obtain the rotated set F:
F=R (alman)

F\by b,

(4)

The steered BRIEF operator used in ORB then becomes:
g.(p.@)=f (p)Vla,b)EF

A lookup table of steered BRIEF patterns is constructed from this to speed up computation
of steered descriptors in subsequent points.

4.1.18.1.3 Matching Process

The first step is to match the keypoints with descriptors generated by BRIEF between two
images taken from slightly different positions, attempting to find a corresponding keypoint
a’ in the second image that matches each point a in the first image. Brute-force matching of
all combinations of points is the simplest method which generally involves an XOR
operation between each descriptor and a population count to obtain the Hamming
distance. This is an O(N?) algorithm, and takes relatively long to complete. However, The
FLANN (Fast Library for Approximate Nearest Neighbor) search algorithm built into OpenCV
is used in current work.

4.1.18.1.4 The Fundamental Matrix

To obtain depth in a 3-D scene, an initial baseline for 3-D projection is first required, which
for the case of monocular images requires the calculation of the Fundamental Matrix F,
which is a the general 3x4 transformation matrix that maps each point in a first image to
another second image. It is generally preferable to use stereoscopic vision for point cloud
reconstruction because the baseline can be obtained with two cameras a known distance
apart at each location. As a result, the fundamental matrix is constant and can be
calculated relatively easily. For monocular vision, the fundamental matrix must be estimated
using homographies. The set of “good” matches M, is used to obtain the fundamental
matrix for the given scene. The fundamental matrix is the matrix F that maps every point on
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the first image to its corresponding location in the second image, based on the assumption
of linear geometry between two viewpoints. Consequently, each keypoint a, in the first
image will map to a corresponding keypoint a’ on the epipolar line (the line of intersection at
a’ of the second image plane with the camera baseline) in the second image by the relation

a‘_'TFa’,=0, i=1,..,n.
6)

For three-dimensional space, the matrix F has nine unknown coefficients and Equation 6 is
linear and homogeneous, so F can be uniquely solved for by using eight keypoints with the
method of Longuet-Higgins. However, image noise and distortion inevitably cause variation
in points that make it difficult to obtain a single “correct” F for all points. Therefore, for
practical calculations, a linear estimation method such as linear least squares or RANSAC
must be used. RANSAC (RANdom SAmple Consensus) is an efficient algorithm designed
for robust model fitting that can handle large numbers of outliers, and is commonly used
with OpenCV and other algorithms. We use RANSAC for its speed to estimate F for all
matches and estimate the associated epipolar lines. Outliers (defined as being keypoints
more than the tolerance 0.1 from the estimated epipolar line) are then removed from M to
yield a final, reliable set of keypoint matches M,. If no keypoint matches remain by this
point, then there are too few features in common between the two images and no
triangulation can be created.

4.1.18.1.5 The Essential Matrix

To perform a three-dimensional triangulation of points from two-dimensional feature planes
and a transformation F between them, it is necessary to take into account any
transformations and projective ambiguity caused by the cameras themselves. A camera
matrix is defined as C=K]|R]|t], being composed of the calibration matrix K, the rotation
matrix R and the translation vector t. We also need to locate the position of the second
camera C2 in real space with respect to the first camera C1. The cameras can be
individually calibrated using a known pattern such as a checkerboard, but fairly good
results have been achieved by estimating the camera calibration matrix as

s0w/2
K=| 0sw/2|
no 1

(7)

For real-world point localization, we can use the so-called essential matrix that relates two
matching normalized points “x and “x' in the camera plane as:
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éi'Teai=o, i=1,..,n.
8)

In this way, E includes the “essential” assumption of calibrated and is related to the
fundamental matrix by E

4.1.18.1.6 Orientation

After calculating E, we can find the location of the second camera C2 by assuming for
simplicity that the first camera is uncalibrated and located at the origin (C1=[l|0]). We
decompose E=txR into its component R and t matrices by using the singular value
decomposition of E. We start with the orthogonal matrix W and its transpose , where

(0-10}
w=|100
001
©)

and the singular value decomposition of E is defined as

100
SVD(E)=U| 010 \v.
nooo

The matrix W does not directly depend on E, but provides a means of factorization for E.
There are two possible factorizations of R, namely R=UW'V' and R=UWV', and two
possible choices for t, namely t=U(0,0,1)" and t=-U(0,0,1)". Thus when determining the
second camera matrix C2=K][R|t], we have four choices in total.

(10)

4.1.18.1.7 Triangulation

Given the essential matrix E, and a pair of matched keypoints, it is now possible to
triangulate the original point positions in three dimensions using least-squares estimation.
The algorithm described by Hartley and Sturm for iterative linear least-squares triangulation
of a set of points is used as it is affine-invariant and performs quite well without excessive
computation time. A point in three dimensions x when written in the matrix equation form
Ax=0 results in four linear nonhomogeneous equations in four unknowns for an appropriate
choice of . To solve this, singular value decomposition can again be used, or the method of
pseudo-inverses. An alternate method is to simply write the system as Ax=B, with A and B
defined as
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axCI % 0—C1 0:0 aXC1 2 1—C1 o1 aXC12; 2—C1
ayCl % 0—C1 20 ayCl % 1—C1 11 ayCl 2 2—C1

0;2

1,2

A=
beZZ;O—CZO;o beZZ,_l-CZG'_1 bXCZZ;Z—CZO;2
be2, € ,bLC2 -C2 bQ2, -2,

(11)
and
—axC12;3—C10’_3

. —ayClz;a—Cllr_3
-bXCZ 2 3-(':20’_3
-bC2, -C2, ..

(12)

Solution of the resulting system of equations (in this case, using singular value
decomposition) yields x, which can be transformed into undistorted “real” coordinates by
x=KC1x. This assumes that the point is neither at 0 nor at infinity, so very distant points
may have to be removed before this process. Because solutions are possible for either
direction of the translation vector t between the cameras, or for a rotation of 1t radians
about the vector t, so this triangulation must be performed four times, once for each
possible combination of R and t, and each resulting point set checked to verify it lies in
front of the camera. We use a simple perspective transformation using C1 and a test to
ensure x,>0. Triangulation produces a point cloud in local (camera) coordinates with points

;-
4.1.18.1.8 Pose Estimation

The last step is to find the object pose from the 3D-2D point correspondences and
consequently the egomotion of the camera relative to the feature points, commonly know
as the Perspective & Point (PnP) problem. Bundle adjustment can also be performed to
optimize the point cloud after triangulation, but works best on a large number of points and
images for, while we are focused on relatively fast triangulation over a few frames. For this,
we apply the OpenCV implementation of the EPnP algorithm. Four control points denoted
as are used to identify the world coordinate system of the given reference point cloud with
n points p,...p,, chosen so that one is located at the centroid of the point cloud and the rest
are oriented to form a basis with the principal directions of the data. Each reference point is
described in world coordinates as a normalized, weighted sum of the control points with
weightings a;. As this coordinate system is consistent across linear transforms, they have
the same weighted sum in the camera coordinate system, effectively creating a separate
basis
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4

Zayl’p' Zauf' =

i—-1

(13)

The known two-dimensional projections of the reference points can be linked to these
weightings with the camera calibration matrix K considering that the projection involves
scalar projective parameters as

( ] Kzaui
(14)

The expansion of this equation has 12 unknown control points and n projective parameters.
Two linear equations can be obtained for each reference point, and concatenated together
to form a system of the form Mx=0, where the null space or kernel of the matrix gives the
solution x to the system of equations, which can be expressed as

m
x= Z By,
i-1 (1 5)

where the set is composed of the null eigenvectors of the product corresponding to m null
singular values of M. The method of solving for the coefficients B depends on the size of m.
Given perfect data from at least six reference points, m should be 1, but in practice, m can
vary from 1 to 4 depending on the camera parameters, reference point locations with
respect to the basis, and noise. Hence, four different methods are used in the literature for
practical solution, but the methods are complex and not summarized here.

4.1.18.2 Expected Performance

The same set of test parameters as in Table 4 from Section 4.1.8.2.2 were used for 3D
reconstruction testing with a 1U CubeSat model. To gain an estimate of time required for
processing, the process of reconstruction was profiled running on the ARM core of a Xilinx
Zynq Z7020 SoC microcontroller (667MHz ARM-Cortex A9). Table 5 shows the timing
results for each part of the 3D reconstruction process®. It can be seen from this that the

3 M.A. Post, J. Li, C. Clark, X. Yan. “Visual Pose Estimation System for Autonomous Rendezvous of
Spacecraft”. ESA Astra 2015: 13th Symposium on Advanced Space Technologies in Robotics and
Automation. ESA/ESTEC, Noordwijk, the Netherlands, 11-13 May 2015.
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majority of time is spent on keypoint production and FLANN search during the tracking

process.

Table 5: Timing Results for CubeSat 3D reconstruction from image sequences

Feature
Test .
Detection
1-2  0.12
3-4 0.12

Feature

Matching

0.058
0.061

Feature Fundamental Essential Triangu-
Selection  Matrix Matrix lation
0.015 0.083 0.0017 0.038
0.010 0.048 0.0014 0.025

PnP
RANSAC
0.0033
0.0026

Ego-M TOTAL
otion  (s)
0.0005 0.32
0.0004 0.27

The accuracy of the reconstruction was evaluated through dimensional analysis of the
resulting point cloud. Table 6 shows the dimensions of separate components
reconstructed from images.

Table 6: Dimensional Analysis Results for CubeSat 3D reconstruction

Component | Size X(m) | Size Y (m) | Size Z(m) | Real X(m) [ Real Y (m) | Real Z (m)
Left Solar 0.307 0.103 0.025 0.300 0.100 0.002
Panel

Right Solar 0.309 0.117 0.032 0.310 0.100 0.002
Panel

Body 0.336 0.112 0.120 0.315 0.100 0.100
Satellite 0.337 0.230 0.115 0.315 0.264 0.100

These results show a lower noise limit for point cloud reconstruction, such that thin
components such as solar panels may exhibit up to 3cm deviation of their points with the
camera within the close range domain as has occurred in these tests. For larger
components of a 0.83m sized target, this translates into an estimated up to 10% error in
dimensional analysis, where a maximum error of 7% was observed in these tests. It should
be noted that surface detection and filtering may be used to reduce this error in additional
DFNs or DFPCs.

Test

Reference

Output

Measure
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Features Detection | Ground Truth matches | estimated 90% similarity
and Matching on images matches

Features Detection, | Ground Truth camera | estimated poses | euclidean distance

Matching and Pose | poses of images and angular
Estimation distance less than
1% of R, where R is
the maximum

operational distance
of the camera.

Triangulation and 3D | Ground Truth point | estimated number of estimated
reconstruction cloud environment scene outliers less
cloud than 10%

4.2 Flight software : DFN Detailed Design

Here we present the detailed design of each data fusion node (DFN) identified in the
DFPCs. A DFN is an atomic processing entity that fulfills a given basic function. It is the
smallest unit of a complex task defined by its function, input and output. However, a DFN
can be defined by a combination of elementary functions which may not expose their
input/output. A DFN exhibits at least two control interfaces:

e configure() and
e process()

The configure() sets all the configuration parameters of the DFN while the process() function
calls library functions to compute the outputs of the DFN.

This section presents the detailed design of each DFN identified in the DFPCs described
previously. This should be the last step before code-level description. The section
introduces two templates: one for DFNs (Sec 4.2.1.1) and one for DFls (Sec 4.2.1.2).

Given the current stage of the project, it is not possible to have a complete exhaustive
description of all DFNs and even more of DFls. Additionally, some fields, e.g. “Diagnostic
capabilities” and “Unit test”, can be filled only after extensive testing and validation and not
before the implementation. However a partial list is provided as it is helpful to create some
instances to see how they fit to the proposed template.

The application of part of the DFNs to this template will enforce an auspicable node
standardisation for the future development phase, during which design details will be
progressively updated.



Reference : D5.2

O INFUSE o

Page : 132
D5.2: PLANETARY RI AND ASSOCIATED EGSE DETAILED DESIGN

4.2.1 DFN: Template DFN

The following section and its subsections propose a template for DFNs.

4.2.1.1 DFN Description
One DFN may have multiple DFI.

DFN Name DFN_Example

DFN element Remarks

Generic description Must be present
Input(s) and Ouput(s) data Data here means both:

e Actual data (e.g. Image16bit)
e Metadata (e.g. CameraParameters, Timestamp)
A DFN cannot work without these data structures.

Input Parameters Can be provided by:
e Configuration file (e.g. Threshold, Size of patch)
e Output of another DFN (e.g. KF reinitialization)

Performance and cost | A cost/performance estimation method which is common
estimation methods to all DFI of this DFN.

Unit test This must be provided with the code, along with the
dataset used for validation.

4.2.1.2 DFI: Template Implementation

This template applies to any DFI. As a DFN can have multiple DFls, there can be several
instances of this template under the same DFN.

DFI Name TemplateNamelmplementationi
DFI element Remark
Est. performance and cost Possibly represented, in an adequate cost/performance

space. This information should make it possible to define a
performance measure and a cost measure for a resulting
DFPC.

External library dependencies |List of external library dependencies (e.g Opencv, PCL)

Input Parameters DFl-specific input parameters. For example:
e Feature thresholds,
e Descriptor length

Diagnostic capacities Includes:
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e FErrors/warnings at runtime (e.g. unexpected

datatype, out-of-range parameter...).

e |Log capabilities (e.g. try/catch results written in a

log file)

e OQutput reports (e.g. “if the image is all black...”)
Fault Detection and Identification is the responsibility of
the DFN. However its Recovery (when possible) is made at
the DFPC level and is part of the Orchestrator.

4.2.1.3 DFN Description File

The DFN description file is a human readable artifact that describes the DFN based on the
DFN template. A code generator produces C++ code and corresponding python bindings
from the DFN description file.

Here we include the DFN YAML description file following our CDFF-Support specification.

File: TemplateDFN.yml

name: Template
input_ports:
- name: templatePortl
type: base::samples::template
doc: Template port 1
- name: templatePort2
type: base::samples::template
doc: Template port 2
output_ports:
- name: templatePort3
type: base::samples::template
doc: Template port 3

4.2.1.4 DFN Sequence Diagram
What happens inside the configure() and process() calls of this DFN.

4.2.2 DFN Detailed Design

The next section describes a first part of the detailed implementation of specific DFNs
which can be used in certain DFPC presented above. The DFN elements and description
are provided for each data fusion node below.



O INFUSE

Reference D5.2
Version 2.0.0
Date 30-03-2018
Page 134

D5.2: PLANETARY RI AND ASSOCIATED EGSE DETAILED DESIGN

4.2.2.1 DFN: FeatAndSigExtractor

DFN Name

FeatAndSigExtractor

DFN element

Remarks

Generic description

Detects and extract a visual point feature from an image.
The feature is represented by a detector choosing
keypoints of interest in the image and by an array of
descriptors describing the region around the keypoint.

Input(s) and Ouput(s) data

Input: A grayscale image (e.g. cv::Mat)
Output: A vector of keypoints (e.g. cv::Keypoint) and an
array of descriptors (e.g. cv::Mat) for each keypoint

Input Parameters

Number of maximum desired features.

Performance and cost

estimation methods

Detection time can be used to estimate the cost of any
feature extractor. For some instances, performance
evaluation methods may exist.

Unit test

4.2.2.1.1 DFI: SIFT Feature Extractor

The use of SIFT has to be confirmed due to patent pending on the algorithm.

DFI Name

SIFT Feature Extractor

DFI element

Remark

Est. performance and cost

Generally slower than other extractors. Very robust.

Input Parameters

- Number of octave layers
Edge Threshold
Contrast Threshold

- Sigma

External library dependencies

OpenCV

Diagnostic capacities

N/A

Unit test

4.2.2.1.2 DFI: SURF Feature Extractor

The use of SURF has to be confirmed due to patent pending on the algorithm.
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DFI Name

SURF Feature Extractor

DFI element

Remark

Est. performance and cost

It is generally outperformed by SIFT but significantly
faster.

Input Parameters

- Hessian Threshold

- Number of pyramid octaves

- Number of octave layers

- Flags for extended descriptor and/or orientation
computation

External library dependencies

OpenCV

Diagnostic capacities

N/A

4.2.2.1.3 DFI: ORB Feature Extractor

DFI Name

ORB Feature Extractor

DFI element

Remark

Est. performance and cost

Very fast and computationally efficient. Less reliable than
SIFT/SURF.

Input Parameters

- Pyramid decimation ratio (scale factor)

- Number of pyramid levels (similar to SIFT/SURF)
- Edge threshold

- Number of points to produce for BRIEF

- Patch size used by BRIEF

External library dependencies

OpenCV

Diagnostic capacities

N/A

4.2.2.2 DFN: Feature Matching

DFN Name

Feature Matching

DFN element

Remarks

Generic description

Given two sets of visual point features returns a set
matches. Each match associate two features.

Input(s) and Ouput(s) data

Input: Two vectors of keypoints and their relative
descriptors
Output: A vector of matches (e.g. cv::DMatch)
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Input Parameters

Distance threshold to accept matches.

Performance and cost

estimation methods

Matching time. Percentage of outliers in the matches.
Min/Max/Avg distance in the matches.

Unit test

Comparison with known matches in two images

4.2.2.2.1 DFI: FLANN Matcher

DFI Name

FLANN Matcher

DFI element

Remark

Est. performance and cost

Main alternative in literature to a brute force matcher. Best
choice in terms of computation time.

Input Parameters

External library dependencies

OpenCV

Diagnostic capacities

TBD

4.2.2.3 DFN: 3D Point Computation

DFN Name

3D Point Computation

DFN element

Remarks

Generic description

Given two sets of visual point features and the calibration
matrix of the camera with which the images were taken
returns a point cloud or more generally a set of 3D points.

Input(s) and Ouput(s) data

Input: Two vectors of keypoints, their pairings and a
calibration matrix

Output: A vector of 3D points (e.g. cv::Point3f) or a point
cloud

Input Parameters

Performance and cost

estimation methods

Computational time.

Unit test
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4.2.2.3.1 DFI: Linear Triangulation (DLT)

DFI Name

Epipolar geometry

DFI element

Remark

Est. performance and cost

Fast but dependent on number of points

Input Parameters

None

External library dependencies

OpenCV

Diagnostic capacities

4.2.2.4 DFN: 3D-3D Motion Estimation

DFN Name

3D-3D Motion Estimation

DFN element

Remarks

Generic description

Given two sets (p,q) of corresponding 3D points (point
clouds) estimates a rigid transformation (R, t) minimizing
the reprojection error |(Rp+t)-q|

Input(s) and Ouput(s) data

Input: 2 vectors of corresponding 3D points,
Output: a rigid transformation aligning the 2 sets of points

Input Parameters

None

Performance and cost

estimation methods

Complexity. Computational time.

Unit test

4.2.2.4.1 DFI: SVD Rigid Body Transformation

DFI Name

SVD Rigid Body Transformation

DFI element

Remark

Est. performance and cost

The algorithm has a complexity of O(d®), where d is the
dimension of the input (typically small).
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Input Parameters

Optionally the DFI can utilise a weight array for all the
point pairs

External library dependencies

None

Diagnostic capacities

TBD

4.2.2.5 DFN: 2D-3D Motion Estimation

DFN Name

2D-3D Motion Estimation

DFN element

Remarks

Generic description

Given a set of 3D points and a their corresponding image
projections. Computes a rigid transformation minimizing
the reprojection error.

Input(s) and Ouput(s) data

Input: a vector of 3D points, a vector of image points, a
camera matrix and an array of distortion coefficients
Output: a rigid transformation

Input Parameters

None

Performance and cost

estimation methods

Complexity. Computational time. Percentage of inliers.

Unit test

4.2.2.5.1 DFI: PnP (Perspective from n-Points)

DFI Name

PnP

DFI element

Remark

Est. performance and cost

Dependent from the algorithm parameterisation

Input Parameters

- Solving method (e.g. EPNP, lterative, P3P)
- Apply ransac or not + ransac parameters
- Use extrinsic guess (for Iterative method)

External library dependencies

OpenCV

Diagnostic capacities

Depending of the chosen method. E.g. P3P requires
exactly 4 matches or will return error.
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4.2.2.6 DFN: Point Cloud Construction

DFN Name

Point Cloud Construction

DFN element

Remarks

Generic description

This DFN combines a new point cloud with an existing
point cloud by only adding points that have not been

already triangulated

Input(s) and Ouput(s) data

Input: Point cloud, re-projected points, pose estimates

Output: Point cloud

Input Parameters

None

Performance and cost

estimation methods

Computational time

Unit test

N/A

4.2.2.6.1 DFI: Point Cloud Builder

DFI Name Point Cloud Builder
DFIl element Remark

Est. performance and cost Fast overall

Input Parameters None

External library dependencies | OpenCV

Diagnostic capacities N/A

4.2.2.7 DFN: Bundle Adjustment

This DFN is optional for use in environment reconstruction

DFN Name

Fundamental Matrix Calculation

DFN element

Remark

Generic description

This DFN optimizes point clouds so that they are a better

match to images




O INFUSE

Reference D5.2
Version 2.0.0
Date 30-03-2018
Page 140

D5.2: PLANETARY RI AND ASSOCIATED EGSE DETAILED DESIGN

Input(s) and Ouput(s) data

Input: Point cloud, feature descriptors (type, cv::Mat),
pairings of features
Output: Point cloud

Input Parameters

Camera parameter matrix, distortion coefficients

Unit test

N/A

4.2.2.7.1 DFI: Bundle Adjustment

DFI Name

Bundle Adjustment

DFI element

Remark

Est. performance and cost

High computational load for large point clouds

Input Parameters

None

External library dependencies

Ceres-solver

Diagnostic capacities

N/A

4.2.2.8 DFN: Fundamental Matrix Calculation

DFN Name

Fundamental Matrix Calculation

DFN element

Remark

Generic description

This DFN calculates a fundamental matrix given feature
positions and their matches

Input(s) and Ouput(s) data

Input: feature descriptors (type, cv::Mat); Pairings of
features, good triangulations for these features

Output: Fundamental Matrix (type, cv::Mat)

Input Parameters

None

Unit test

Calculate a known matrix from known points

4.2.2.8.1 DFI: Fundamental Matrix Calculator

DFI Name

Fundamental Matrix Calculator

DFI element

Remark
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Est. performance and cost Fast calculation

Input Parameters None

External library dependencies | OpenCV

Diagnostic capacities N/A

4.2.2.9 DFN: Estimation Filter

DFN Name Estimation Filter
DFN element Remark
Generic description Predicts the state based on a state motion model and

corrects it with a measurement

Input(s) and Ouput(s) data Input: current state, motion model, measurement,
measurement model
Output: predicted and updated state

Input Parameters Process noise, measurement noise, initial covariance

Performance and cost | Error w.r.t. ground truth.
estimation methods

Unit test

4.2.2.9.1 DFI: Extended Kalman Filter

The Kalman filter consists of the functions: init for initialization, predict and correct for
update of the predicted state with the measurement.

DFI Name Extended Kalman Filter
DFI element Remark

Est. performance and cost Dependent on use case
Input Parameters See following table
External library dependencies | OpenCV

Diagnostic capacities TBD
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Kalman Filter parameters and design specifics are tailored to the use case. Some possible
parameters of the DFN are gathered in the table below.

Parameter Parameter type

Max number of sample points Tracker parameter
Search distance [pixel integer] Tracker parameter
Maximum LSE iteration Tracker parameter
Minimum incremental update to declare Tracker parameter

convergence [deg, mm]

Maximum update parameters with respect | Tracker parameter
to initial prediction to declare
divergence[deg, mm]

Threshold on percentage of inlier matches | Tracker parameter

Kalman filter process noise Tracker parameter
Kalman filter measurement noise Tracker parameter
Kalman filter initial covariance Tracker parameter

Table 5: DFPC Parameters of the model-based visual tracking

4.2.2.10 DFN: Image Geometric Processing

DFN Name Image Geometric Processing

DFN element Remark

Generic description Corrects the distorted image geometrically
Input(s) and Ouput(s) data Input: gray scale image (type, cv::Mat)

Output: gray image (type, cv::Mat)

Input Parameters Camera parameter matrix, distortion coefficients

Performance and cost | N/A
estimation methods
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4.2.2.10.1 DFI: Image Undistortion

DFI Name Image Undistortion
DFI element Remark

Est. performance and cost N/A

Input Parameters None

External library dependencies | OpenCV

Diagnostic capacities N/A

Unit test

4.2.3 Remaining DFNs

The remaining DFNs, which have been listed in the various DFPCs, but not in this detailed
design section, as well as the further details needed to complete the description templates
of DFNs currently provided as examples in the previous sections, will be continuously
completed and updated during the future development phase.

4.3 Ground software : DFPC Architecture and Design
4.3.1 DFPC: Camera calibration

This is a supporting DFPC, performed in preparations for the actual test run. Its task is to
obtain optimal camera parameters - perspective projection and distortion parameters
(radial, tangential, thin-prism) - which are used to provide mapping between points in image
space and rays in real-word space. Correct camera calibration is a prerequisite to any
DFPC depending upon single camera data and corresponding metadata as its input.

Calibration hardware: Cameras will be calibrated using images of 2D checkerboard-like
pattern with origin denoted by three dots. We recommend manufacturing a pattern of size
that fills in the whole field of view when positioned at the focus distance of the cameras, but
in practice a smaller one, placed closer to the camera to still fill in roughly the whole field of
view, can be used as well. A solid alu-dibond finishing or similar is recommended.

Calibration software: DLR aims to provide its background-IPR camera calibration softwares
CalDe and CalLab. CalDe is a tool used to extract checkerboard corners from images of
calibration pattern. This tool can be used either in a fully automatic mode, or
semi-automatically with user pointing to the pattern origin. CalLab is a tool to perform a
non-linear least-squares optimization of correspondences between image-space and
real-world-space positions of the extracted corners.
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This DFPC inputs are :

- Several camera images
- Calibration pattern configuration file

The DFPC output is:
- Estimated camera calibration parameter file

4.3.2 DFPC: Stereo calibration

This is a supporting DFPC, performed in preparations for the actual test run. Its task is to
obtain optimal stereo camera bench parameters - perspective projection, distortion (radial,
tangential, thin-prism) and stereo-camera-transformation parameters - which are used to
provide mapping between points in stereo image space and points in real-word space.
Correct stereo camera calibration is a prerequisite to any DFPC depending upon stereo
camera bench data and corresponding metadata as its input.

Description of hardware, software and input/output breakdown is identical to previous
chapter.

4.3.3 DFPC: Body/ Camera calibration

This is a supporting DFPC, performed in preparations for the actual test run. Its task is to
obtain optimal 6DOF transformation between robot body frame and camera frame. Correct
body-to-camera calibration is a prerequisite to any DFPC, which needs to obtain robot
body egomotion from visual odometry inputs.
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5 Detailed Description of EGSEs

The goal of this chapter is to provide the detailed design of EGSE and DFPCs. It includes
the description of the hardware that is identified to conduct analog tests, completed by the
software API they offer and test sites. The software detailed design should describe all data
types used by DFPCs and DFNs as well as their integration into robotics middlewares.

The chapter is organised as follows :

presentation of the EGSE detailed design, including DLR, CNRS/LAAS, DFKI and
CNES EGSE,

presentation of the InFuse framework, the objective here is to provide an overview of
its key principles,

presentation of the detailed design of DFPCs,

presentation of the detailed design of DFNs.

This work is still going on and this chapter will live during the development phase of the
projects.

This section presents all the EGSE that will be involved in InFuse to demonstrate and
validate InFuse components. It includes EGSE provided by DLR, CNRS/LAAS and DFKI.

5.1 DLR EGSE
Ground support equipment provided by DLR is threefold:

The Handheld Central Rover Unit (HCRU), with various setups,
The BB2 rover, to carry the HCRU and its own sensors,
The Planetary Exploration Lab (PEL).

Figure 69: lllustrations of DLR EGSE, from left to right: (1) HCRU basic setup, (2) HCRU
sensoric setup, (3) BB2 in PEL.
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5.1.1 HCRU

The Handheld Central Rover Unit presents the following characteristics:

- mobile and portable
- hardware and software is equivalent to ExoMars BB2 and LRU rover
- EtherCAT Bus System with control frequency 1kHz

Sensor suite:

IMU: XSens MTi-10

B/W camera: Guppy Pro F-125 B

Color camera: Guppy Pro F-125 C

Camera lens: Schneider/Kreuznach Cinegon 1.8/4.8

Software setup and APIls:

- OS: OpenSuse Leap 42.1 64bit,

- Runtime-configurable hardware abstraction framework: robotkernel (DLR
proprietary),

- IMU integration via xsens_imu_drivers,

- Camera drivers and software integration: SensorNet (DLR proprietary),

- Robot control operating system: ROS,

- Module deployment: Links and Nodes real-time framework (DLR proprietary).

5.1.2 BB2 Rover

The ExoMars rover BB2 has a total mass of approximately 100 kg and a footprint of
approximately 136 cm x 131 cm and allows mounting relatively large payloads. The rover is
equipped with various sensors (e.g. six 6DOF force-torque sensors) and both the high level
rover control as well as the individual actuators can be commanded independently.

Figure 70: ExoMars Phase B2 Breadboard (BB2)

BB2 has currently been refurbished and is now in line with the “DLR mobility standard”. A
uniform software and hardware architecture has been implemented to facilitate testing and
integration. Now, all foreseen systems (e.g. handheld mock-up or optional LRU rover) share
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a common architecture which allows mutual usage and exchange of software and hardware
modules or the implementation of optional sensors or algorithms on any of the devices.

Hardware:

- Motor controller: 18x EImo Gold DC Whistle,

- Fieldbus: EtherCAT,

-  PC: Intel Core i7-2720QM, 8 GB RAM, Kontron KTQM67/mITX,

- Encoder: 18x Maxon MR128 CPT 225771,

- Potentiometer: 15x NOVO WAL305 (Steering, Deployment, Bogies),
- 6 Force/Torque-Sensors: ATl Mini85 S-1000-50.

Software:

- OS: openSUSE Leap 42.1 64 bit,
- Runtime-configurable hardware abstraction framework: robotkernel (DLR

proprietary),
- Module deployment: Links-and-Nodes real-time framework (DLR proprietary)

5.1.3 Planetary Exploration Lab
The DLR-RM PEL test facility consists of a 5.5 m x 10 m indoor soil bin. It is used for testing

the short range planetary scenarios foreseen for OGS validation and testing.

The terrain can be composed by different materials, e.g. soft soil or stones and rocks of
different size and shape, to investigate the mobility for different terrain set-ups. A wide
variety of planetary soil simulants as well as obstacles and rocks is available.

tracking cameras

Figure 71: PEL Pose Tracking and DSM Device
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For ground truth generation, the PEL is equipped with an optical position tracking system
and a fully automated Digital Surface Model (DSM) device.

The pose tracking system allows tracking all 6 degrees of freedom and the trajectory of the
rover or the position of obstacles can be measured precisely.

Pose tracking characteristics:

- Real time tracking of 6 DoF rover motion @ 60 Hz,
- Allows measuring pose of reference landmark precisely,
- 8 cameras,
- Marker on rover or reference landmark,
- Accuracy:
- upto approx. < Tmm,
- up to approx. < 1°.

The DSM device consists of five cameras that are mounted on a bar which is moved over
the test bed by a linear axis. From these coloured images, a 2.5 dimensional DSM with a
resolution of a few millimetres per pixel can be computed via Semi-Global Matching. The
DSM directly forms a precise reference map of the terrain and can also be used to
document the test setup and results (e.g. wheel tracks).

DSM characteristics:

- Cameras: 1360 x 1024 pixels,
- Accuracy up to:

- Vertical 2.23 mm,

- Horizontal: 3.13 mm.

5.2 DFKI SherpaTT Rover

SherpaTT will be used in a Mars analog demonstration scenario in Morocco. On the rover,
the HRCU described in section 5.1.1. will be integrated. The rover will be teleoperated and
the data generated by both system will be used to demonstrate the the CDFF-Dev features
offline.

OG6 will provide an API to send motion commands to SherpaTT rover as well as a control
layer to perform the corresponding motions. The sensor data, odometry and joint states will
be made available via an API, exactly as it will be done in the OG2 demonstration. During
SherpaTT functioning, Rock logs with the sensor data will be generated. A joypad will be
also provided allowing in this way the remote operation of the SherpaTT rover by a human
operator. The ground truth position of the robot will be given thanks to a differential GPS.

The HCRU provided by OG6 will be mounted physically to the robot allowing the acquisition
of a richer set of sensor values. An APl will be made available by OG6 to allow the
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acquisition of sensor data similar to the one provided to access SherpaTT. The sensor data
generated will, as well as for the rover case, be logged.

At a later stage the logged data will be loaded and fused offline using InFuse CDFF-Dev to
provide maps and poses of the robot. Any existing DFPC provided by InFuse and suitable
for such scenario can then be tested offline. In this demonstration, features of CDFF-Dev
will be validated such as loading of logged data from multiple RCOSs, and testing of
various data fusion solutions on such data.

SherpaTT sensors:

Lidar: Velodyne HDL-32E,

Laser range finder: Hokuyo UST-20LX,
Camera: Basler Ace (2048 x 2048 px, 25 fps),
IMU: Xsens MTi-28A AHRS.

SherpaTT actuators:

- RoboDrive BLDC-motor kits, HarmonicDrive gears and partially equipped with linear
drive kits.

- Suspension system: 4 identical, aluminium-casted units with 5 DoF. Allows active
ground adaptation and independent body attitude control.

- Force linear joints: 3500 N,

- Wheel torque: 74 Nm (nominal).

Figure 72: SherpaTT in two space analog scenarios

SherpaTT Software API:

- Interface between OG6-Sherpa and HRCU :
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SherpaTTTeleClient

+getRoverPose() : Pose

+getManipulatorJointState() : Joints
+getMobileBaselointState() : Joints
+getFrontalCameralmage() : Image
+getGripperCameralmage() : Image

+getIMUData() : IMU

+getDEM() : DEM (TBC)

+getDGPS() : DGPS

+sendMotion2D{eing. command : Motion2D)
+sendManipulatorJointCommand(eing. command : Joints)

Figure 73: API Provided by OG6 to exchange data with SherpaTT

5.3 LAAS Rovers

The multi-robot EGSE is made of the two robots Mana and Minnie, each equipped with a
full suite of sensor that allow them to perform autonomous navigation tasks. Both robots
have been conceived as configurable research platforms, to which additional sensors and
computing units can be added.

Figure 74: The robots Mana (right) and Minnie (left), pictured in autumn 2015.
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5.3.1 Mana

Platform: Mana is a Segway RMP400 platform, with four non-orientable 0.53 m diameter
wheels. The platform dimensions are w x | x h =76 x 112 x 61 cm, and its weight is 110
kgs.

The platform is controllable through a USB interface with linear and angular speed
commands sent at 50 Hz. Each wheel rotation speed and is returned as the same rate.

Proprioceptive sensors: apart from the platform sensors, Mana is equipped with:

e A six-axis IMU (Xsens MTI-100) made of 3 accelerometers, 3 gyrometers and 3
magnetometers. The device can return raw data or attitude and heading information.

o A fiber-optic gyro (KVH DSP-3000), mounted so as to measure the yaw speed. After
correction of the Earth rotation (defined by the operating latitude), the drift of the
integrated heading speed, delivered at 100 Hz, is of the order of 1 degree per hour.

e A RTK GPS (Novatel Flex6), that emits measured positions and speeds at 100 Hz
with a cm accuracy (provided corrections emitted from a nearby base are received
at a rate of 0.5 Hz)

The data of these three sensors are accessed through a RS232 serial link.
Exteroceptive sensors: Mana is equipped with 2 Lidars:

e A panoramic Lidar (Velodyne HDL64), composed of 64 independent telemeters,
delivers panoramic scans at rates from 5 to 20 Hz. The vertical field of view is -24 /
+2 degrees, the data throughput is 1.3 million points per second

e An automotive Lidar (Sick LD-MRS 400001) mounted on a 2-axis orientable turret
allows to deliver high resolution point clouds ina H x V =110 x 90 degrees.

Both Lidars export their data through an Ethernet interface, the turret that rotates the Sick
Lidar is controllable through a serial link.

Computing unit: The computing unit is an Advantech ARK-3440F fanless embedded PC,
with a i7 2.58GHz processor, 8 GB of memory and a 256 Go SSD hard drive, with
placeholders for PCI extensions. The PC is running Ubuntu 16.04.

Communications: The robot is equipped with WiFi communication, and an independent
remote emergency stop.

Supporting software: Mana software is composed of Genom3 components, that exploit
the ros_comm middleware stack. The components are supervised by means of TCL scripts.

5.3.2 Minnie

Minnie is a robot very similar to Mana, with the following differences:
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e The platform is a RMP440 model, with the same physical characteristics as Mana
(the only difference being the on-board motor control electronics, which exhibits the
same interface)

e The exteroceptive sensor suite is currently made of a Velodyne HDL 32 panoramic
Lidar, composed of 32 independent telemeters, delivers panoramic scans at a rate
from 10 Hz. The vertical field of view is -30 / +10 degrees, the data throughput is
700,000 points per second.

The rest of this suite is currently being procured. It will be composed of three stereoscopic
benches: two fixed wide angle benches at the front and rear of the platform, and one
orientable stereoscopic bench mounted on a mast on top of the robot.

e The fixed benches are similar to the HazCam configuration of the MER HazCams.
They are made of FLIR USB3 1/3 inch 1 MPixel cameras and Theia 1.7 mm lenses
yielding 120 degrees horizontal field of view. The orientable bench is similar to the
NavCam configuration of the MER. It is made of FLIR USB3 cameras and Cinegon
4.8 mm lenses, yielding a 90 degrees horizontal field of view.

e The computing unit is made of two Advantech ARK-3440F fanless embedded PCs.

5.3.3 Ground station
The ground station is made of:
e A WIiFi access point with 200m range, which can be extended with an additional
remote access point connected via a directional antenna,
e Arouting PC,
e A GPS base, which corrections are broadcasted through WiFi.
5.3.4 CNES SEROM Mars Yard
The SEROM facilities at CNES will also be made available to perform a subset of our

validation and demonstration scenarios.

For safety reasons, the Mars yard is bounded by slopes steeper than the authorised
threshold for navigation, so that the rover will remain within this field when moving
autonomously.

The Mars yard is roughly 80m long and 50m wide. The aerial view of the terrain shown in
the following figure was taken from a plane in August 2011.
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Figure 75: Aerial View of CNES Mars Yard (Credits CNES)

The outdoor terrain is made of pozzolan and of stones of various sizes and shapes. It
consists of areas and features with variable density and geometry to meet various
requirements, depending on the purpose of the tests (perception tests, locomotion tests,
localisation tests, etc.). It will therefore be possible to perform tests on :

- Areas with various density of stones,

- Areas with surmountable or insurmountable obstacles,
- Flat areas,

- Areas with slopes,

- Sandy areas.

The following figures illustrate the various types of terrains available within the yard.
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Figure 76: Area with a high density of small rocks

Figure 77: Area with large diameter rocks, i.e. forbidden obstacles for the autonomous
navigation mode
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Figure 78: Flat and obstacle free area

Figure 79: Sandy dune on the left hand side of the yard
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Figure 80: Valley on the left of the dune
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6 Conclusion

The present document covered all the items required to support the development phase :
detailed scenarios and use cases, system modeling, detailed architecture of DFPCs and
detailed design of the whole.

It presented the detailed scenarios and validation strategy that should be implemented to
first validate InFuse is ready for integration in futur systems in the scope of the SRC SPACE
ROBOTICS, next to qualify InFuse performances in terms of resources consumptions,
localisation and DEM accuracy. Scenarios were designed to really focus on key data
products that InFuse should build by introducing use cases dedicated to each of them. The
validation strategy relies on offline processing to conduct the study of algorithms and on
on-line processing to validate their integration and real-time behaviour. The online
processing the either done thanks to a simulated rover o a real rover, in order to ease the
transition from the development phase to field testing.

Following the definition of key scenarios, the system modeling was presented to give a
global view of all entities involved to implement our reference scenarios. The various
systems and subsystems were defined, as well as their relationships. It exposed the
principle of the integration process of InFuse with EGSE that will mainly rely on the robotics
middleware ROS. Moreover, the system modeling emphasized the links between InFuse
and other parts of the system, like the turret, sensors and the locomotion system.

The document went on with a description of DFPCs that have to be implemented. This
detailed architecture described the content of DFPCs that were decomposed into DFNs.
The idea here was to identify common functions shared among DFPCs as well as their
internal behaviour.

The last chapter will gather the detailed design of DFPCs and DFNs. The work is still on
progress and this chapter will be kept updated during the development phase.

Finally, the document includes 4 appendices. The first one deals with the definition of
frames and mathematical conventions to manipulate rotations and transformations. The
second appendix lists requirements that should be verified or tested. The next one is the
template proposed to describe DFNs and DFPCs. And the last one proposes a first design
of the data product manager.
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7 Appendix
7.1 Definition of Reference Frames

This appendix sets out the various frames that are required to manipulate and exchange
data in InFuse and over its external interfaces. We propose to follow aerospace convention
or stick to common conventions as much as possible.

The coordinate systems are right-hand Cartesian and the positive rotational direction is
defined counter clockwise around the selected axis, when this axis points toward the
observer. Units must be expressed in the International System.

We now describe frames, starting from geo-referenced ones down to local ones.

7.1.1 Geo-referenced frames

ECEF : Earth Centered Earth Frame. This frame and its associated cartesian coordinates
system allow to describe any point and transformation on earth. It can be used to define the
AbsoluteFrame (AF). By definition the AbsoluteFrame is the inertial frame attached to the
planet.

WGS84 : World Geodetic System 1984. This frame and its associated polar coordinates
system allow to localise any point on Earth.

IAU2000:49900 : Mars 2000. This and its associated polar coordinates system allow to
localise any point on Mars.

Normal to ellipsoid
at point M

Figure 81: Geo-referenced frames (ECEF)
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In order to use a most common convention of the robotics community with Z upwards, we
define and recommend the use of the following convention for coordinates frames with a

global reference :

ENU : East North Up. This convention is used to set up a cartesian frame on a local plane
tangent to the ellipsoid. It can be used to define the GlobalTerrainFrame (GTF) and the
LocalTerrainFrame (LTF). By definition, the GlobalTerrainFrame is a reference frame in
which is defined a whole navigation mission (a long term path).

Zecef

A

' Prime Me”dian

> Yecef

Xecef

Figure 82: Local terrain frame

The LocalTerrainFrame is a reference frame in which are defined the local trajectories.
During a travel sequence, this frame remains fixed with the planet, but becomes reset at the
start of a new travel sequence. The rationale for this is that a travel sequence requires a
stationary reference frame in which to measure position and navigation maps.

7.1.2 Local Frames
Now we address local frames attached to some hardware components.

RoverBodyFrame (RBF) : This is the frame associated to a given stable and salient
reference point on the rover chassis. The frame origin is fixed with the rover, and thus
moves as the rover moves. This is an intermediate frame to ease length measurements

between the various parts constituting the rover.

As it is widely used on the field of ground-based mobile robotics, the following convention
has been chosen for the rover body frame:

e The x-axis, X_RB, lies towards the front of the rover in the nominal direction of
travel.
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e The z-axis, Z_RB, lies vertically upwards, antiparallel to the gravity vector when the
rover is on flat, horizontal terrain.

e The y-axis, Y_RB, completes the orthogonal right-handed set, and will lie to the left
of the rover.

Figure 83: lllustration of the RoverBodyFrame (RBF) (EADS-Astrium/ExoMars)

RoverNavFrame (RNF) : This is the frame associated to the rover body for navigation. The
frame origin is fixed with the rover, located at the nominal Planetary surface, centered under
the rover turn-in-place rotation axis.

In order to keep the same convention all along the transformation chain from a sensor to
the AbsoluteFrame, we have chosen the convention Z upward, X forward and Y leftward.

CameraFrame (CF) and ImageFrame (IF) : These are the common frames attached to a
camera and its sensor that allow to use the simplest projection matrix while respecting the
common convention on image coordinates. This frame definition can be extended to many
kind of sensors, like stereo bench, LIDAR, TOF camera, etc.

Camera

Image

Figure 84: lllustration of the CameraFrame (CF) (left) and ImageFrame (IF) (right)
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The current set of reference frames may be complemented with additional ones when
applicable, depending on the type of rover and the final set of sensors and actuators used
in a given implementation. These additional frames shall be included in the implementation
description.

7.1.3 Mathematical Conventions and Notations

This section describes the mathematical conventions used to express rotation, translation
and transformation.

We assume here, that we will only use transformations. The transformation from frame A to
frame B converts the coordinates of a point P expressed in A to its coordinates expressed
in B. We propose the following notation :

PA=T A2B*P_B

Transformations can be represented either by a transform matrix (using homogeneous
coordinates) or a quaternion plus a translation. Given the expression above, there is no
ambiguity for T_A2B as a transform matrix. Therefore, we will only detail the quaternion
case.

T_A2B = (T_o_A, T_q_A2B), where T_o_A is the origin of A in B and T_a_A2B is the
transform quaternion from A to B. TO BE FURTHER DETAILED.
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df

7.2 Design Requirements

Design requirement are provided in the spreadsheet
InFuse_D5.2_APPENDIX_REQUIREMENTS that accompanies this document.

7.3 Technical Note on DFN and DFPC Specification

7.3.1 Scope of this Note

This appendix sets out a proposed template for the definition of Data Fusion Nodes (DFN),
and another one for the description of the various Data Fusion Processing Compounds
(DFPC) outlined in D4.1. It sits at a "pre-implementation” description level, the lowest level
before code lines.

7.3.2 Definitions

Data Fusion Nodes (DFN) and Data Fusion Processing Compounds (DFPC) have already
been defined in D4.2 (see e.g. appendix 1 Glossary). Here we give some more details.

7.3.2.1 DFN

Atomicity A Data Fusion Node is an atomic processing entity, in the sense that it fulfills a
single given basic function. It is the smallest brick, for the purpose of the CDFF, into which
we break a more complex processing task. At a conceptual level, a DFN is completely
defined by:

e |ts purpose

e The data types of its input(s) and output(s)

Interfaces The only control interfaces exhibited by a DFN are configure and process (e.g.
see file LaserFilterDFEN.pdf).

Internal makeup A DFN may be made up of several smaller functions, but these functions
and their output/input are not exposed. For instance, an ImageLineSegmentExtractor DFN is
made up of the sequence ComputelmageGradient, ThresholdimageGradient,
ChainThresholdedGradients, ChainLinearApproximation, but this sequence, which may
include some controls, remains completely internal to the DFN and is not exposed.
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7.3.2.2 DFPC

A DFPC always generates at least one data product. It is an organized set (a compound) of
DFNs, with determinate data and control flows controlled by the Orchestrator. It may
additionally maintain an internal data structure, under the responsibility of the Data Product

Manager.
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Figure 85: A simple schematic view of DFNs and DFPCs.

Figure 84 shows how DFNs can be put together to form DFPCs (two DFPCs on this figure).

A few comments:

e A DFPC always links input data to one (or more) data product

e The control scheme of a DFPC is not “hard-wired”, in the sense that the sequence of
DFN calls can vary, depending on the context (input parameters of the DFPC,
intermediary results of DFNs). The control is implemented by the Orchestrator.

e The interfaces with OG2 have been defined in D4.1 and D4.2, but the associated

data structures still need to be defined
The interfaces with OG4 have been defined in D4.2, they comprise the “acquired data”. The
possible additional inputs (Initial Data and Models) still need to be defined - note the
“knowledge” input are not and will not be explicit, and are actually implicitly considered in the
implementation of the DFNs.
e A DFPC may theoretically be made up of a single DFN (although we don't have such
a case in our list of DFPCs)
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A table providing a detailed view of all interfaces and workflow between OG2-OG3-OG4 can
be found in Appendix 7.5.

7.3.3 DFN Template

7.3.3.1 DFN Template Elements

Template element Remarks
1. Generic description Not much to say: must be present
2. Input(s) and Ouput(s) data Data here means both:

e Actual data (e.g. Image16bit)
e Metadata (e.g. CameraParameters, Timestamp)
A DFN cannot work without these data structures.

3. Input(s) Parameters Can be provided by:
e Configuration file (e.g. Threshold, Size of patch)
e Output of another DFN (e.g. KF reinitialization)

4. Estimated performance and This should be represented, if possible, in an adequate

cost cost/performance space. This information should make it possible
to define a performance measure and a cost measure for a
resulting DFPC.

5. External library dependencies | Straightforward

6. Diagnostic capacities Includes:
e Errors/warnings at runtime (e.g. unexpected datatype,
out-of-range parameter...).
e Log capabilities (e.g. try/catch results written in a log file)
e Output reports (e.g. “if the image is all back...”)
Fault Detection and Identification is the responsibility of the DFN.
However its Recovery (when possible) is made at the DFPC level
and is part of the Orchestrator.

7. Unit test This must be provided with the code, along with the dataset used
for validation.

7.3.3.2 Towards a Typology/Taxonomy of DFNs

It may be interesting to categorize DFNs, from both a description/documentation point of
view, and mostly from an implementation point of view. Being entirely defined by their input
and output data types, the DFN categorisation naturally induces a categorisation of data

types.
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This categorization is yet to be done, and will lead to an object-oriented implementation of
DFNs.

7.3.3.2.1 DFN Characterization

A DFN is characterized by:
e A dictionary of Data Fusion implementations (DFI) fitting the DFN definition
e A cost/performance space representation (if possible) of each implementation,
enabling the use to choose which DFI to use (5.)
e A set of validation tests (Added after implementation) (7.)

7.3.3.2.2 DFI Characterization

There can be different implementations of the same Data Fusion Node (e.g. a Visual Point
Feature extractor DFN can be implemented with Harris Features or SURF). The different
implementations are called Data Fusion Implementations (DFI) and characterize the given
DFN.

Each DFl is characterized by:
e |ts input parameters (3.)
e lts external library dependencies (5.)
e |ts diagnostic capacities (6.)

DFN1 DFN2
In1 » + Defined function
« Inputs/Ouput data Outi 1 . b
+ DFIdictionary : {DFI1,DFI2} — N Fonomoeonoo i
« Cost/Performance representation g . !
In2 > + Validation test :
_ / \ DFE2
« Inputs parameters + Inputs parameters
+ Output reports + Qutput reports
« External libary dependencies + External libary dependencies
« FDIR + FDIR
+ Logging States - Errors + Logging States - Emors

Figure 86: Example of a possible implementations of a DFN

7.3.4 DFPC Description Template

The specification of a DFPC is split into three main parts:


https://www.draw.io/#G0Bz49B4IRnFaZWWdYOGdtbnA0cUk
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Data Flow description: this is a purely functional description of the elementary
processes (the DFNs) that compose a DFPC and their relations, seen only from a
data-flow point of view. The goal of this description is to identify the list of required
DFNs to build a DFPC.

Data Product Management: this part describes the shared data between the DFNs in
the given DFPC, and the interfaces between this data and the various DFNs: memory
calls, data cropping, etc...

The section ends with further considerations about the Data Product Management,
which in particular can handle data in-between DFPCs.

Control description: a pure data-flow description is not operational, and in particular
does not depict the sequence and logic of a DFPC. This section proposes a way to
depict the control flow within a DFPC: order in which DFNs are called, DPM access
to shared data, synchronicity of timestamped data, etc. The control flow will be
achieved by the Orchestrator for implementation.

7.3.4.1 DFPC Data Flow Description

The DFPC data flow provides a layout and ordering of the different DFNs. It defines:

Inputs/Outputs of the DFPC

Inputs/Outputs of each DFN

DFN types used

Shared data between DFNs: even though data product management is not
represented, it provides data for DFNs as inputs.

Find below example for LIDAR-PG-SLAM:

nnnnnnnnnnnnnnn

Figure 87: LIDAR-PG-SLAM
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In this example, all inputs that are provided by DPM and outputs that are inserted in the
DPM are represented with a * after their name.

7.3.4.2 DFPC Data Product Management

The Data Product Management of DFPC specifies:
e The shared data structures amongst the different DFNs
e The processing units that query and insert those data structures
e Specific managing processes

Note the DPM will also comprise inter-DFPC relations -- this will be further developed.

7.3.4.2.1 Shared Data Structures

The shared data structures are a list of data types that need to be accessed by different
DFNs in the course of a DFPC execution, e.g. in SLAM, the map is updated several times at
each different observation times by successive DFNs.

As an example, the shared data structure for Pose-Graph LIDAR-based SLAM would be the
Map, that contains (note these will further be depicted using data types) :
e Pose Graph: List of poses and constraints
o Pose: {x,y,z,t1,t2,t3} coordinates of the rover + frame in which they
are defined
m Coordinates: float
m Frame: string defining the reference frame
o Constraints: Transformation, and error
m Transformation: rotation and translation obtained by ICP
e Rotation: 3x3 Matrix
e Translation 1x3 Vector
m Constraint
[ J
e KeyFrames: List of PointClouds and Poses
o Pose: defined above
o PointCloud: List of Points
m Points: {x,y,z} coordinates of points in space
e Coordinates: float

7.3.4.2.2 Processing Units - Queriers

A querier is a processing unit that accesses the shared data structure and crop it in order to
feed the right input to a given DFN. They are non-generic (each DFN requiring a particular
part of data), and are defined by their inputs and outputs.
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Processing units for Pose-Graph LIDAR-based SLAM would be the following ones:

e Local Map querier:
o Input: KeyFrames and Graph
o Output: LocalMap (PointCloud)
e Graph Querier:
o Input: PoseGraph
o Output:PoseGraph

The hierarchy of queriers for PG LIDAR-based SLAM can be seen in the following figure:

<<DATA - Shared=>

Graph-MAP : Map

Pose
Grap

Data Level

<QUERIER>>
<<QUERIER>> = i
LocalMapQuerier GraphQuerier
Z =M= s in PoseGraph
Queriers Definition in Jgesf;r;ame;: B
T in PoseGraph:
(Generic, just inputs/output w
datatypes)
out PoseGraph|
out PointCloud
v
<<QUERIER>> <<QUERIER>> <<QUERIER>>
MominalMode:LocalMapQuerier LoopClosingMode:LocalMapQuerier GraphQuerier
in KeyFrames: in KeyFrames: in PoseGraph
in PoseGraph: in PoseGraph:
5 1. Select PARAM1 keyframes 1. Find Loop closing candidates
Impiemematzon Level 2. Aggregate PointClouds 2. Aggregate Corresp PointClouds Return Graph
(DFN-specific) 3. Retum Created PointCloud 3. Return Created PointCloud
cfg.yaml cfgd.yaml
oy cfg2.yaml s
out PointCloud out PointCloud outPoseGraph|

Figure 88: Hierarchy of queriers for PG LIDAR-based SLAM

7.3.4.3 DFPC Control Flow Description

The orchestrator is responsible for temporal rightful execution of a DFPC. Each DFN/Querier

can be considered as a single process/thread, and the orchestrator organizes the execution
of those DFN.


https://www.draw.io/#G0Bz49B4IRnFaZR3RvN0NsNl9icEU
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The control flow can be represented as an UML sequence diagram. Elements appearing on
this diagram include:

e Objects appearing in the data flow

e Data product management units (queriers)

e The DFPC orchestrator itself is represented as an object sending signals the the

different DFNs

The aim of the sequence diagram is to represent the temporal course of the execution of a
DFPC. An example of such sequence diagram can be found below for the PG-LIDAR-based
SLAM:

‘ | }' i 1 L Matcher ‘ ‘ ‘ ‘ i MapBuilder | |LoopClosing LocalMapQueHer‘ ‘ LoopDetector: PCMatcher ‘ ‘ AddLoopEdge: MapBuider | | OplimizeGraph: GraphOptimizer
P FirstCloud [ | H
raphUpd: lJ
-
NowCloud
® 3 updatsLocalMap)
calMapUpdated
| ¢ cavapupotes_ M
GolCPQ
i il
P 14—
[ [
gotGraphi) >
[ S Y S 1
pdatoGrap
2 iJ
R R U
pdatoL ocalMay p) .
D calMapUpdated i
GoteciLoopGiosing 0 >
N - T iJ
[Ar [
[overlag 3 thresh2 && error < thresha]
gotGraphi)
lmmmmmm e I e n JJ
; gotGraph( >
; graph 1]
K-=-=-=-=-F-- T et
graph _D
€= mm e e m = J— R
P S P S P S 1
2T 1
waitForNextCloud
[else]
|waitForNexiGioud

Figure 89: PG-LIDAR-based SLAM sequence diagram

In this diagram, the temporal aspect is vertical, and messages (corresponding to events
triggered by the orchestrator) are represented by the arrows.

7.4 Architecture of the Data Product Manager

This section details the design of the DPM, along the following structure:
1. Introduction: general concerns, definition of the DPM


https://www.draw.io/#G0Bz49B4IRnFaZdFBKNlJLR1h0VzA
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2. Use cases: the list of situations in which the DPM is at play. This will help to specify
the data that have to be stored and managed by the DPM, as well as the associated
processes.

3. List of functions to be ensured by DPM: it is a synthesis made by analysing the
various use cases.

4. Implementation: this is the detailed design of the structure of the DPM and the
associated functions.

7.4.1 Introduction

7.4.1.1 General concerns

The introduction of the Data Product Manager (DPM) within the InFuse CDFF comes from
the following facts:

e The CDFF comprises various localization DFPCs that estimate the robot pose, in
various reference frames and at various frequencies. A core function of the CDFF is
the ability to fuse these estimates to enhance the precision of the robot pose
estimate: this is handled by the DPM.

e There are numerous clients of the robot pose data product: OG2-ERGO first, and
also some DFPCs of the CDFF, e.g. the ones that build terrain models. These clients
should have a unified access to the robot pose estimate, whatever the selection and
configuration of the localisation DFPCs: it is desirable to have a single interface for
these clients to access the robot pose. The DPM provides this interface.

e Similarly, there are numerous clients of the terrain model data products: OG2-Ergo
first, and also some localisation DFPCs that exploit an environment model: the DPM
is the interface through which the environment models are accessed by the
processes that need them.

e Like robot pose estimates, environment models can evolve over time (when past
pose estimates have been refined for instance), and there may be dependencies
between the various models (a request of the Digital Terrain Map can be made to
build a Navigation Map upon a Digital Terrain Map for instance): there is a need to
maintain the consistency of the built environment models, which is an additional role
of the DPM.

In mobile robotics, there are strong interdependencies between the localisation and
navigation processes, and it has been early reckoned that these two functionalities are two
facets of the same problem that must be be solved concurrently: this leads to the
development of SLAM approaches. However SLAM approaches mostly consider
environment models dedicated to localisation, whereas other environments models are
required for the autonomy of mobile robots (in the InFuse case, the DTM and the Navigation
Map). Furthermore, localisation estimates can be produced using dedicated environment
models that are not produced by a SLAM solution (in the InFuse case, Absolute Localisation
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using the Orbital Map for instance). The DPM explicits these relations. Figure 89, shows
these relations between the two kinds of data products built within the CDFF, and the four
following kinds of DFPCs:
e Localization DFPCs, which produce position estimates without resorting to any
environment models. These DFPCs are:
o Wheel Odometry,
o Visual Odometry,
o Point Cloud Model-based Localization
e SLAM Localization DFPCs, which produce both position estimates and dedicated
environment models. These DFPCs are:
o Visual SLAM,
o Lidar Pose-Graph Localisation
which respectively produces the Visual Map and the Lidar Map.
e Map-based Localisation DFPCs, which produces positions estimates on the basis of
existing environment models. These DFPCs are:
o Absolute Localisation
o Visual Map-based Localisation
o Lidar Map-based Localization
which respectively exploits the Orbital Map, the Visual Map and the Lidar Map.
e Environment Modelling DFPCs, which exploits the robot position estimates and
produces environment models. These DFPCs are:
o DTM building
o Navigation Map building
DFPCs

DPM OG2-Ergo

Localization
DFPCs

v
SLAM-based | Poses }—’.
Localization

DFPCs

Map-based

Localization Environment
DFPCs modelling DFPCs
7Y

| Environment models

—_—
Data flow DFPC

Figure 90: Relations between the various kinds of DFPCs and the DPM
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7.4.1.2 Definition of the DPM

The role of the DPM is to handle the selection, structuring and storage of all the data
processed or produced by the CDFF that may be re-used, either internally by InFuse
processes or to satisfy OG2-ERGO requests. Additionally, it is the interface through which
robots expose and retrieve the CDFF data products in multi-robot scenarios, and also the
interface through which ground operators can access the CDFF data products.

The DPM can be seen a robotics-dedicated Geographic Information System (GIS). With
respect to the activated DFNs and DFPCs in the CDFF, the DPM processes the data
insertion requests. Internally, it manages all the spatial related data by implementing
insertion, deletion or update functions, aiming at satisfying future needs for data products
and storage constraints.

7.4.2 DPM use cases

This section depicts the cases in which the DPM is involved in the various scenarios
depicted in D4.1 (Technical Trade-Offs Analysis). Each use case is first qualitatively
presented, the involved DFPCs and their relation to the DPM are listed, and the required
DPM functions and the data to store / manage within the DPM are then listed. When needed,
a picture representing the data structures and functions at play is provided.

7.4.2.1 Integrate estimation of past poses and motion estimates

Case 1: fusion of wheel and visual odometries
e Description: Visual odometry (VO) processes two stereoscopic frames acquired at
times ¢ and ¢+ Ar, and estimates the motion MtV—>Ot+At’ which is made available at
t+ At+6¢, where 67 is the visual odometry processing time. Meanwhile, the robot is
continuously moving, and higher frequency motion estimates are provided by the

wheel odometry (WO). At the time ¢+ Az + 6¢of the production of the VO estimate, the

VO and WO estimates M} %, ,, and M!°.,, are fused, and this past information has

to be propagated up to the present time, by re-integrating the WO motion estimates
provided between ¢+ Ar and ¢+ d¢.
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Figure 91: Interfaces with the DPM for the fusion of wheel and visual odometries
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Because of computing time, VO can only estimate the motions between ¢ and ¢+ A¢ at a
later time ¢+ At + 6¢, and this motion estimate is fused with the associated motion estimated
by WO at time ¢+ Atr+6¢ +6¢2. Once fused with the WO estimate of the same motion, the
exported pose (in red) is updated by composing the newly estimated position at past time
t+ At and the motions measured by odometry since then.

e Involved DFPCs: Visual Odometry and Wheel Odometry serve the DPM with motion
estimates (more generally, any localization DPFC that produces a motion estimate
between two positions)

e Data to store / manage inside the DPM:

o History of motion estimates produced by the independent DFPCs
e Required functions
o Store the history of poses of independent un-synchronized estimators
o Fusion of two independent motion estimates
o Recomputation of current pose after the fusion of past motion estimates

Case 2: Absolute localization

e Description: an absolute position estimate is produced. It allows to re-estimate the
whole trajectory made since the last absolute position has been produced (this
function is mainly launched at the end of a mission, to build a Total Rover Dtm, see
following use case)

e Involved DFPCs: Absolute Localisation, which serves the DPM with pose estimates
(similarly, also Vision Map-based Localization, Lidar Map-based Localisation serve
the DPM with pose estimates in the associated reference frames).

e Data to store / manage:

o A history of the poses that can be revised after an absolute localisation
estimation

e Required functions:

o Fuse the absolute pose estimate with the current pose estimate
o Re-estimate the history of poses

Note that the two other map-based localisation DFPCs (Vision Map-based Localisation and
Lidar Map-based localisation) interact with the DPM in a strictly similar manner.

7.4.2.2 DTM building
Case 1: Rover Map and Fuse Rover Map building

e Description: this is the nominal operation of the DTM Building DFPC. Point Clouds
produced either by stereovision or a Lidar are fused into a DTM structure. The Rover
Map DTM is expressed in the Rover Frame at the time of the Point Cloud production,
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the Fused Rover Map is expressed in a dedicated frame (most likely corresponding
to the frame at the time of the first Point Cloud production?)

e Involved DFPCs:

o DTM building is a client of the DPM, to obtain the pose associated to the
incoming Point Clouds

o DTM building serves the DPM with its products

e Data to store / manage:

o History of poses associated to Point Clouds acquisitions: some point clouds
acquisitions are made without a pose computation associated to them (e.g. in
the case of scientific area localization). We need to make sure that we are
able to retrieve a pose each time an observation is performed.

e Required functions (prerequisites):
o Deliver the pose associated to a Point Cloud acquisition
o Store the produced DTMs

Pose (1) )«
<D

Poses

« Provides Pose(t)

Environment models

Y
Point Cloud DTM Building « Stores the local DTM Rover’-%f AI; used
attime t « Stores the fused DTM

A 4

_—
Data flow DFPC « DPM function test

Figure 93: Role of the DPM with respect to the DTM Building DFPC

Case 2: Total Rover Map building

e Description: this is one of the service provided by the DTM Building DFPC, which
consists in building a DTM that integrates a large set of Point Clouds (typically, to
prepare a Getting-Back scenario). While the the Total Rover Map building could be
done in-line as Point Clouds are produced, the benefits of building a Total Rover Map
comes after the estimate of an absolute pose (or a loop closing event detected by a
SLAM DFPC, or a map-based position estimate produced by one of the Map-based


https://www.draw.io/?scale=2#G1PSf6lzMy81XsX2GIt3KhJeiDZhsVXho7

Reference : D5.2

// \‘ Version : 2.0.0

} Date : 30-03-2018

SNr Page : 176
D5.2: PLANETARY RI AND ASSOCIATED EGSE DETAILED DESIGN

Localisation DFPCs), which will yield the production of a spatially more consistent
DTM.
e Involved DFPCs: DTM Building, which is a client of the DPM, to retrieve the poses
associated to each Point Cloud acquisition.
e Data to store / manage:
o the Point Clouds (or, most likely, the associated Rover Maps) acquired during
a given time period
e Required functions:
o Deliver the pose associated to a series of Point Cloud acquisitions

sequence of \
Poses

i

DPM

_ Poses

« Provides a sequence of Poses associated to
the stored DTMs

Environment models

+ Provides all the stored local DTMs
DTM Building > « Stores the total DTM

sequence o
Local DTMs

A

\ 4

EEE—
Data flow DFPC « DPM function

Figure 94: Role of the DPM with respect to the Absolute Localization DFPC when it
produces the Total Rover Map

7.4.2.3 Exploitation of environment models produced by the CDFF

Case 1: localization with respect to localization maps
e Description: a rover pose is estimated relatively to a localisation map, which can
either be:
o The Visual Map (produced by the Visual SLAM DFPC) for the Visual
Map-based Localisation DFPC
o The Lidar Map (produced by the Lidar SLAM DFPC) for the Lidar-based
Localisation DFPC
e Involved DFPCs:
o The DFPCs that build maps serve the DPM with these maps: Visual SLAM
and Lidar SLAM
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o The DFPC that estimate poses with respect to maps are clients of the DPM,
which provides them access to the required maps
e Data to store / manage:
o The localisation maps: Visual Map, Lidar Map
e Required functions:
o Provide the stored localisation maps (or a subpart of it)
o Integrate the position estimates provided by the Map-based Localisation
DFPCs

Pose (1) )«

DPM
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sensor data
at time t
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Image)
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Map-based Revised Provides Pose(t) i
base . Refined
Localization pose (1) « Fuses the pose estimate

« Updates the current robot pose

Environment models

« Selects a part of the Localisation Map
according to Pose(t)

Localization
map

A

—_
« DPM function
Data flow DFPC

Figure 95: Role of the DPM with respect to the Map-Based Localization DFPCs

Case 2: Absolute localisation
e Description: the Absolute Localization DFPC requires a DTM (possibly with
associated luminance information) to assess matches with the Orbital Map. Most
often this DTM is a fused one, as a DTM built from a single Point Cloud acquisition
does not cover a surface large enough to be matched with the Orbital Map.
e Involved DFPCs:
o the Absolute Localisation DFPC is a client of the DPM : to retrieve a DTM,
and to retrieve a subpart of the Orbital Map.
o The Absolute Localisation DFPC serves the DPM with an absolute pose

estimate
e Data to store / manage:
o The DTM

e Required functions:
o Provide a DTM
o Integrate the position estimate provided by the Absolute Localisation DFPC
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Figure 96: Role of the DPM with respect to the Absolute Localization DFPC

Note these two cases are very similar, with the slight difference that the DPM serves the
Absolute Localization DFPC with the DTM, whereas the two other Map-based Localisation
DFPCs exploit raw data.

7.4.2.4 Science target localisation

e Description: a scientific target is detected in an image by a process that is not within
the InFuse CDFF. The detection corresponds to an area (most likely rectangular) in
the image: its localisation in 3D must be provided by the DPM. This can be done:

o by associating a bounding box in a memorized point cloud that has been
acquired at a position close (or rather, equal) to the image acquisition
position,

o alternatively, by reprojecting the image area in the DTM corresponding to the
area in which the target has been detected

The returned position is a 3D bounding box localized in the reference frame
associated to the image acquisition.
e Involved DFPCs:
o Science Target Localisation
e Data to store/ manage:
o Point Cloud data associated to the image on which the science target
detection is applied
o Alternatively, DTM covering the area of the image on which the science target
detection is applied
e Required functions:
o Retrieve the Point Cloud data or the DTM associated to the area of the image
on which the science target detection is applied
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Note: to be applicable, the Science Target Localisation DFPC requires that 3D data are
acquired along with the image that is processed to detect the science target.

7.4.2.5 Multi-robot use cases

In multi-robot setups, robots may benefit one from each other for both localisation and
environment modelling purposes.

Case 1: inter-robot localisation

e Description: One robot A perceives and localizes a robot B with respect to its current
pose. This relative localization information is used to refine both robots position.
e Involved DFPCs:
o Point Cloud Model-based localisation, which estimates the relative robot’s
position
e Data to store / manage:
o The history of both robots poses
e Required functions:
o Re-estimate the history of the robots’ poses

Case 2: one robot exploits environment models produced by an other one for localization
purposes.

This case is very similar to the “localization with respect to localization maps” case, with the
sole difference that the maps used are provided by another robot.

e Description: One robots exploit the Localisation Map produced by an other robot to
localize itself.
e Involved DFPCs:
o Map-based robot localisation
o The DFPC that estimate poses with respect to maps (Visual Map-based
Localisation and Lidar-based Localization) of one robot are clients of the DPM
of the other robot, which provides them access to the required maps
e Data to store / manage:
o The localisation maps: Visual Map, Lidar Map
e Required functions:
o For the robot providing the localization map: provide the stored localisation
map (or a subpart of it)
o For the robot exploiting the localisation map: Integrate the position estimates
provided by the Map-based Localisation DFPCs
Case 3: one robot exploits environment models produced by an other one for navigation
purposes
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e Description: to plan an itinerary towards a goal in an unmapped area, one robot
queries the other one with the Navigation Map on a given area
Involved DFPC: none
Data to store / manage:
o The navigation map
e Required functions
o Assess whether a navigation map is available on the requested area, deliver it

Note: this use case is tightly associated to the itinerary planning functionality: this
functionality should state which unknown areas are to be crossed, so that the DPM can be
queried the associated parts of the navigation map.

7.4.2.6 Serve the operators

e Description: The DPM being in charge of memorizing and structure the DFPC data
products and a selection of the acquired raw data, it is the component that is in
charge of delivering the data requested by the operators -- e.g. at the end of a
traverse mission.

Involved DFPCs: None

Data to store / manage:
o The history of the robot poses
o A selection of the raw exteroceptive data acquired by the rover
o The built environment models

e Required functions:

o Deliver poses, raw data or parts of environment models corresponding to
either a time interval or a spatial area

7.4.3 Synthesis: DPM functionalities

7.4.3.1 DPM services

The core services the DPM is offering are the following:

1. Produce at high frequency a continuous position estimate, expressed in any specified
frame

2. Integrate the localisation estimates produced by all the localization DFPCs

3. Associate a position estimate to any exteroceptive raw data (image, point cloud) or
derived product (point cloud obtained from stereovision), expressed in any specified
reference frame

4. Serve both the OG3-Ergo and CDFF processes with environment models
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7.4.3.2 Stored and managed data

The data stored and managed by the DPM are the following:

History of rover poses:

o A short term history of motion estimates produced by the Wheel Odometry
and Visual Odometry DFPCs. This is required to fuse the motion estimates of
these DFPCs and the pose estimates produced by any other localisation
DFPC (both SLAM and Map-based Localisation DFPCs), and to propagate
the fused information up to the current time.

o A long term history of the poses associated to Point Cloud acquisitions. This
is required to update the DTM and Navigation Maps after the revision of the
past poses associated to Point Cloud acquisitions, the revision of these poses
being triggered by any of the SLAM-based and Map-based localisation
DFPCs.

History of acquired data and built environment models:

o History of the Point Cloud data exploited to build the DTM and Navigation
Maps. This is required to update the DTM and Navigation Maps after the
revision of the past poses, triggered by any of the SLAM-based and
Map-based localisation DFPCs (note that for the sake of memory storage, the
Rover Map associated to each Point Cloud are memorized, not the Point
Clouds).

o History of the built environment models. This is required to serve the DFPCs
that exploit environment models, other robots in the multi-robot case, and
OG2-Ergo. The Localisation Maps are simply stored as they are produced by
the SLAM DFPCs. As for the DTM and Navigation Maps, they can be built on
demand on the basis of the history of data acquisition.

7.4.3.3 DPM functions

To achieve the DPM services, the functions the DPM must achieve are the following:

Select the motion estimates and poses to store

Fuse independent motion estimates and pose estimates

Update the current rover pose after the fusion of motion or pose estimates
Re-estimate the rover poses stored in the long term history of poses (after a pose
fusion has been performed)

Associate a pose to raw data acquisitions or derived product -- either at the time of
the acquisition, or for past acquisitions
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e Provide the environment models and/raw data upon a request that specifies the
needed area or time interval (Point Clouds, Localisation Maps, DTM and Navigation
Map)

7.4.4 Architecture and implementation design

The DPM manages pose estimates and environment models: although these two kind of
information are closely interrelated, for the sake of clarification and modularity we propose to
separate them in two components.

7.4.4.1 Managing poses

The following figure illustrates the various poses that are produced by the Localisation
DFPCs, as well as the poses corresponding to data acquisition. They must all be
memorized, so as to allow the pose fusion processes to integrate data corresponding to past
poses, and to produce updated past poses after the application of a pose fusion process
(e.g. to allow the re-building of a Total Rover DTM after a Map-based Localisation DFPC
updates a rover pose).

Sensor acquisitions v v

(e.g. Lidar)

v

V.V V

v

Visual odometry

Map-based v
localisation

v

LV AV VA VA VA VAR

Highest rate
motion estimate (WO)

SOOI VA VA VAR VA VA VA

] > v Timed data production
Time progression

Figure 97: Timeline of the various pose estimates handled by the DPM.

The integration of the fusion processes, as well as the managing of the past poses history is
illustrated by the next set of figures.
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The poses are managed within a single centralized component, the Position Manager
(PoM), that takes as inputs all the pose and motion estimates produced by the localisation
DFPCs, and that fuses these information resorting to two kinds of fusion DFNs:

e A Kalman Filter DFN is used to fuse the individual pose estimates as they are
produced
e A pose graph-based non linear optimization DFN is used to update the memorized
past poses, when a pose estimate allows such an optimization (namely, when a loop
of transforms is identified in a graph of memorized poses).
The latter DFN is introduced here to propagate the information brought by the fusion of
Map-based Localisation DFPCs to past poses. It is the same DFN that is used in the Lidar
Pose-Graph Localisation DFPC.

7.4.4.2 Using Envire for managing poses

The Envire library provides already a set of utilities that can be very useful for the
implementation of the DPM. This section briefly introduces some of them.

The Envire Graph can be populated with Frames connected by transformation with
covariance corresponding to each of the different frames internal to the robot (e.g. sensor_i
frame) as well as external to the robot (e.g. marker_i). These frames can be stored
connected for instance to the previous position of the frame at any frequency. So far, the
uses cases that have been covered with the Envire Graph only incorporate a frame for each
position to be represented and the corresponding transformation has been updated. Envire
Graph imposes currently unique naming of the frames. For covering the DPM requirements
an approach would be to declare frames with an index associated to them or to modify the
library so that frames with same name could be included in the same graph. Some utility
functions could be implemented to access quickly all frames created after certain timestamp
to update its value

One very useful utility of the Envire Graph that can also be used in this case is the
subscription to events. Any object can be implemented and a subscriber to a certain type of
events taking place on an Envire Graph of the same library. Events to which a class can be
subscribed are for instance, the update of the position of an existing frame, the addition of a
new frame to graph or the addition of an object of certain type to a particular frame of the
graph or to any frame in general. This function can become very useful to update the poses
of a high frequency pose estimation system with high covariance based on a lower
frequency and more accurate pose estimation method.

Another advantage of using Envire is to reduce the use of additional dependencies in the
project because Envire will be integrated as the visualization tool for the CDFF-Dev tools.
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Indeed, this visualization tool can become very useful in the development of the DPM as well
as for debugging,

7.4.4.3 Managing environment models

The environment models are produced by the SLAM and Environment Modeling DFPCs.
There are no dependencies between the various models, and managing them in a unique
centralized component would require high bandwidth exchanges with these DFPCs.
Therefore, they are managed within the DFPCs where they are produced, and the DFPCs
and other client processes (OG2-Ergo, other robots in multiple robot setup, and the
operators) that require environment models have access to them through requests
addressed to the proper DFPC.

Within each of these DFPCs, the environment models and memorized raw data are
accessed through requests that specify the area or time interval corresponding to the
desired information. For this purpose,

As it is done in most geographic information systems, the environment models are stored
within a structure of tiles that paves the space along a regular Cartesian discretization. This
simple structure indeed yields straightforward spatial hashing, and allows simple data
management policies to load, save, allocate, export and transmit chunks of data. A tile is a
container, it is not information per se. The tile structure is geo-referenced once and for all: it
is their information content which is updated as information are gathered by the robot.

7.4.4.4 Using Envire for the Management of Environment Models

Envire provides serialization methods tested for maps. It is implemented to allow the storage
of any kind of object in its frames. Though the correspondent serialization methods would
have to be implemented.

Both approaches distributed as well as centralized could be covered using the Envire Graph.
In the first case only one Envire Graph would have to be maintained and in the second one
for each DFPC requiring serialization.

7.4.4.5 Envire usage summary

Envire provides at this stage well tested code that makes efficient management of the
sensor data and associated data products. It provides serialization mechanisms that should
ease the integration of the tool in different RCOS and an event system that would be very
useful for the DPM for instance to trigger the update of old poses bases on the acquisition of
a more accurate one.
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Envire missed a couple of features that would be needed basically these are two queries: (1)
Deliver all sensor data and data products of the requested type(s) associated to a time
interval (2) Deliver all sensor data and data products of the requested type(s) associated to a

given volume.

Finally, it is important to mention that Envire is at this stage not thread safe. At this point it
has not been discussed whether the DPM will require concurrency.

7.5 Detailed Interfaces Between 0G2/0G3/0G4
The following table presents the the detailed interfaces between OG2-0G3-0G4.

setCDFFState 0OG2 -> [Synch |State Initialize, idle, [Success, Error,
0G3 reset, stop invalid States
getCDFFState 0G2-> [Synch |NULL N/A Runtime state
0G3 or error
getDFPCStatus 0G2-> [Synch |Type DEM or Pose Runtime state
0G3 or error
getRoverMap 0OG2 -> [Synch |List of sensor names, [DEM map or |Map produced with
0G3 Sensors, expected error state information gathered by
accuracy, accuracy sensors on the rover itself
update rate, |values, at the last sensing capture
resolution, Hz,
area of pixel to cm
coverage coverage,
in sg. mts
getFusedRoverMap 0OG2 -> [Synch |List of sensor names, [DEM map or
0G3 Sensors, expected error state Map produced with
accuracy, accuracy information gathered by
update rate, |values, sensors on the rover itself
resolution, Hz, at the last and previous
area of pixel to cm sensing captures.
coverage coverage,

in sgq. mts
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getFusedTotalMap 0OG2 -> [Synch |List of sensor names, |DEM map or
0G3 Sensors, expected error state Map produced with
accuracy, accuracy information from any
update rate, |values, sensing sources at any
resolution, Hz, capturing time, e.g. rover,
area of pixel to cm orbital, other mobile or
coverage coverage, static devices on the
in sq. mts surface.
getLocalPose 0G2 -> [Synch |frame name, |frame string, Pose + Produces the LocalPose
0G3 List of sensor names, [uncertainty Pose of the BodyFrame in
Sensors, expected the LocalTerrainFrame
accuracy, accuracy
update rate |values,
Hz
getGlobalPose 0G2 -> [Synch |frame name, |frame string, Pose + Produces the GlobalPose
0G3 List of sensor names, |uncertainty Pose of the BodyFrame in
Sensors, expected the GlobalTerrainFrame
accuracy, accuracy
update rate |values,
Hz
getAbsolutePose 0OG2 -> [Synch |frame name, |frame string, Pose + Produces the AbsolutePose
0G3 List of sensor names, |uncertainty Pose of the BodyFrame in
Sensors, expected the AbsoluteFrame
accuracy, accuracy
update rate |values,
Hz
getTargetRelativePose |OG2 -> |Synch  |[frame name, [frame string, Pose + relative pose (3 axes
0G3 List of sensor names, [uncertainty position and 3 axes
sensors, expected attitude) of the target Body
accuracy, accuracy Frame expressed in the
update rate |values, chaser Body Frame, with
Hz associated uncertainties
getTargetRelativeVelo |OG2 -> |Synch  |[frame name, [frame string, twist + relative speed (3 axes
city 0G3 List of sensor names, |uncertainty translation speeds and 3
sensors, expected axes rotation speeds) of
accuracy, accuracy the target Body Frame
update rate |values, expressed in the chaser
Hz Body Frame, with
associated uncertainties
getModelOfTarget 0G2 -> [Synch |frame name, |frame string, 3D Model This interface produces the
0G3 List of sensor names, 3D model of the target

sensors,
accuracy,
update rate

expected
accuracy
values,
Hz

spacecraft.
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Reference

Version
Date
Page

initDFPC Orch -> [Synch  |DFPCID DFPC Name Success, Error
DFPC States
stopDFPC Orch -> [Synch  |DFPCID DFPC Name Success, Error
DFPC States
getDFPCStatus Orch -> [Asynch |DFPC ID, Name, N/A
DFPC Frequency, Hz,
Callback Function ptr
function ptr
getDFPCPose Orch -> [Asynch |DFPCID, Name, N/A
DFPC Frequency, Hz,
Callback Function ptr
function ptr
getDFPCDEM Orch -> [Asynch |DFPCID, Name, N/A
DFPC Frequency, Hz,
Callback Function ptr
function ptr
initiICU 0G3 -> [Synch NULL N/A Success, Error
0G4 States
setOperatingMode 0G3 -> [Synch |OpModelD ID Number Success, Error,
0G4 invalid States
selectSensorConfigura |OG3 -> |Synch [SensorID, ID number, Success, Error,
tion 0G4 Configuration |[ConfigID invalid States
ID number
getOpModeSensorSta |OG3 -> |Synch  |OpModelD ID Number Runtime or
tus 0G4 error states
getStereoCamDepthM |DFPC  |Synch  [NULL N/A Depth map or
ap -> 0G4 error state
getStereoCamDisparit [DFPC  [Synch  |NULL N/A Disparity Map
yMap -> 0G4 or error state
getStereoCamPointCl [DFPC |[Synch |NULL N/A Point Cloud or
oud -> 0G4 error state
getStereoCamlmages |DFPC |Synch [NULL N/A Images or
-> 0G4 error state
getToFPointCloud DFPC [Synch |NULL N/A Point Cloud or
-> 0G4 error state
getIMUData DFPC [Synch |NULL N/A Linear
-> 0G4 acceleration &
angular
velocity or
error state
getlLidarPointCloud DFPC [Synch |NULL N/A Point Cloud or

-> 0G4

error state
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Reference

Version
Date
Page

getLaserScan DFPC [Synch |NULL N/A Planar 2D PC
-> 0G4 or error state
getRadarScan DFPC [Synch |NULL N/A 2D or 3D PCor
-> 0G4 error state
getHRCameralmage |DFPC |Synch [NULL N/A Image or error
-> 0G4 state
getTIRCameralmage [DFPC [Synch |NULL N/A Image or error
-> 0G4 state
getForceTorque DFPC |Synch [NULL N/A Wrench data
-> 0G4 or error state
getStructuredLightPoi |DFPC  |Synch [NULL N/A Point Cloud or
ntCloud -> 0G4 error state
getStarTrackerOrienta |DFPC  |Synch  [NULL N/A Orientation
tion -> 0G4 data or error

state
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Executive Summary

This document identifies and addresses the adaptations required for CDFF sub-components
required for deploying a set of DFNs or a complete DFPC on a space grade computer (not
space qualified) i.e a LEON architecture board with RTEMS as the operating system. A
subset of CDFF functions will be selected for being ported to an avionics testbed that is
representative of space-grade computing platforms.

The second case addressed is the deployment in a decentralized space grade architecture
that is representative of a SPARC Leon3/4 board running RTEMS with an FPGA
coprocessor such as the Zync Ultrascale SoC. The aim is to perform a portability check and
profiling of the selected functions. The use of an FPGA coprocessor will be used to verify
that some appropriate DFNs can be accelerated by use of an FPGA in connection with the
rest of the DFPC running on a conventional microprocessor.

The planetary track is the show that the developed DFPCs can be exploited in real time and
in realistic conditions. Among the scenarios that have been defined in RD5 (D4.1: Technical
trade-offs analysis) in order to define an specify the required DFPCs for the planetary track,
the ones which experimental achievement is targeted are - long traverse, Rendez-vous and
getting back to base or lander.
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1 Introduction

1.1 Purpose

This document describes in detail the design of the implementation of the orbital and
planetary reference scenarios. It includes the description of the EGSEs and the detailed
design of the software, the latter being based on the design of the CDFF as described in
D4.2.

The document addresses two reference implementations (i.e. integration and validation
tracks): the first one at the consortium level, RI-INFUSE, and the second one at the SRC
Space Robotics level, RI-SRC.SR. The objective of RI-INFUSE is to demonstrate and
evaluate the full capabilities of the CDFF: from space compliance to state-of-the-art
algorithms, from traditional to innovative sensors, and even possibly control in the loop. The
objective of RI-SRC.SR is to demonstrate that the CDFF is ready to be integrated with OG1,
0G2, OG4 and OG6.

1.2 Structure

This document is structured as follows:
Section 1: This is introductory material.
Section 2: Deployment methods of CDFF on RTEMS, FPGA’s and Multi-robot EGSEs

Section 3: Description of the 3 EGSEs and approach to port CDFF to these architectures

1.3 Applicable documents

AD1  InFuse Grant Agreement
AD2 InFuse Consortium Agreement

AD3 InFuse internal management manual for project partners

1.4 Reference documents

RD1 Description of Action document
RD2 D3.1 Technological Review
RD3 D3.2 System requirements

RD4 D3.3 Early CDFF architecture and ICD
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RD5 D4.1 Technical Trade-off Analysis
RD6 D4.2 Advanced CDFF architecture and ICD
RD7 D4.3 CDFF Unitary and integrated test plans

RD8 D4.4 Preliminary design document

1.5 Acronyms

DF: Data Fusion

CDFF: Common Data Fusion Framework
API: Application Program Interface

OO0S: On-Orbit Servicing

RCOS: Robot Control Operating System
DFN: Data Fusion Node

DFPC: Data Fusion Process Chain/Compound
DFNCI: Data Fusion Node Common Interface
DPM: Data Product Manager

FPGA: Field-Programmable Gate Array

HDL: Hardware Description Language

HLS: High-Level Synthesis

MW: Middleware

LOS: Line of Sight

Fps: Frames per second

OOS-sim: On Orbit Servicing simulator

OG: Operational Grant

IMU: Intertial Measurement Unit

OT: Orbital Track



Reference : D5.3

/( \‘ Version : 2.0.0

/ Date : 30-03-2018

SNr Page : 8
D5.3: ARCHITECTURES RELATED EGSE DETAILED DESIGN

PT: Planetary track
OBC: On Board Computer
DEM: Digital Elevation Model

FPGA: Field Programmable Gate Array
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2 CDFF deployment requirements

This section describes the required EGSEs for deploying a set of DFNs or a complete DFPC
on a space grade computer (not space qualified) i.e a LEON architecture board with RTEMS
as the operating system. The objective of this activity is to demonstrate the capability of
porting DFNs that are middleware independent onto space grade computation platforms
that can enable future space applications on space flight hardware. Utilizing distributed
processing (locally) with FPGAs supporting as coprocessors can provide an acceleration of
critical and computationally heavy functions. To demonstrate this, one or more DFNs will be
selected by doing a trade-off on the complexity of the algorithms and porting effort to port
via high level synthesis or VHDL and deploy it on an FPGA coprocessor, supporting the main
Leon 4 processor.

2.1 Leon architecture with RTEMS

A subset of CDFF functions will be selected for being ported to an avionics testbed that is
representative of space-grade computing platforms. The objectives of this porting
experiment are two:

e Perform a portability check, i.e. assess the compatibility of the CDFF software with
the limited resources of space processors (computational power, memory size) and
with the specific constraints in terms of development environment, operating system,
programming languages, available libraries

e Perform profiling of the selected functions, i.e. measure the performance of the
selected CDFF modules on a space processor in terms of execution speed and
memory consumption.

The target platform for the porting of a subset of the CDFF software is a LEON4 processor.
This choice has been based on the fact that one of the most promising high-performance,
radiation-hard processors that will be available in Europe in the near future is the GR740, a
quad-core LEON4 processor that has been designed as the ESA Next Generation
MicroProcessor (NGMP). For spacecraft applications, LEON processors are normally used
with the RTEMS operating system, therefore the InFuse architecture EGSE will be a LEON4
+ RTEMS platform.

2.2 Decentralized computing architecture

This section describes how CDFF will be deployed in a decentralized space grade
architecture that is representative of a SPARC Leon3/4 board running RTEMS with an FPGA
co-processor such as the Zync Ultrascale SoC.

An FPGA can be used to accelerate data processing operations by implementing dedicated
algorithms in digital logic. However, FPGA acceleration is challenging and intensive in both
programming implementation and power consumption per logic cell compared to
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implementation on a microprocessor. For this reason, only selected algorithms (represented
by specific DFNs) will be chosen for coprocessor acceleration.

The use of an FPGA co-processor will be used to verify that some appropriate DFNs can be
accelerated by use of an FPGA in connection with the rest of the DFPC running on a
conventional microprocessor. As full implementation of DFNs in Verilog/VHDL would require
more time and resources than is available for such a functional test, we will instead use
high-level synthesis (HLS) tools to convert a subset of C++ code from a DFN representing
the function to be accelerated into VHDL, which will then be implemented on an FPGA. To
facilitate connection of a microprocessor to the FPGA, we plan to perform this test on a
Xilinx Zynqg system-on-a-chip device using the Xilinx SDSoC toolchain for HLS and code
integration. The degree of compatibility with RTEMS needs further investigation, but an
RTEMS board support package is available for the Zynq platform and it is likely that an
implementation of RTEMS with HLS support is feasible.

2.3 Integrated planetary track scenarios

The aim of the integrated scenarios for the planetary track is the show that the developed
DFPCs can be exploited in real time and in realistic conditions. Among the scenarios that
have been defined in RD5 (D4.1: Technical trade-offs analysis) in order to define an specify
the required DFPCs for the planetary track, the ones which experimental achievement is
targeted are:

e lLongtraverse
e Rendez-vous
e Getting back

2.4 Multi-robot planetary track scenarios

No actual multi-robot scenario has been defined in RD5, as their achievement would require
a decisional layer that yields cooperative decision making and execution coordination. Yet,
some DFPCs implement functions that can be exploited for multi-robot collaboration. These
are:

e DEM fusion: one robot receives the DEM built by another robot, and fuses it into a
larger DEM. This naturally implies the DEM Building DFPC
e Inter-robot localisation, which can be achieved by two different means:
o Direct localisation of one robot with respect to the other, resorting to the Point
Cloud Model-Based Localisation DFPC
o Indirect localisation, by registering point-cloud data, DEMs, or point-cloud
data with a DEM, resorting to the LIDAR Map-based Localisation DFPC.
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3 Description of the EGSEs

3.1 LEON architecture with RTEMS

3.1.1 LEON4 processing board

The single board computer used is a GR-LEON4-ITX evaluation board from Gaisler. The
board is equipped with a LEON4 SoC implemented in a Structured ASIC from eASIC
technologies. The LEON4 SoC has the following features:

e Dual core SPARC V8 integer unit with 7-stage pipeline, 8 register windows, 8 KiB
instruction and 4 KiB data caches, hardware multiplier and divider, power-down
mode, hardware watchpoints

e non-blocking double precision IEEE-754 floating point unit

e Memory Management Unit

e Multi-processor interrupt controller

The processor core frequency is 200 MHz. As mentioned above, the system has level-1 data
and instruction caches but does not feature any level-2 cache.

o LEGH4 EEETS e LEOH4 IEEETS4 e e —

o SPARC ¥B FPU g SPARC I U : el TAG doms

Supgen - Supgon Debrirg 11001000
Uinit 4 D-cache bcacha Mul & Linit 4 D-cache bcacha Ml & Lirsi

Ditw Ditw

. AMBA AHB L.} . AMBL AHE BARELI
Axif AHE

Gt Al g 200 ks Bridge

PCI PCI Trace

Figure 1: Block diagram of the dual core LEON4 SoC used in the GR-LEON4-ITX board.

The SoC has two AHB buses: the one with the processors and the memory controllers runs
at 200 MHz, while the one with most of the peripherals (e.g. USB, Ethernet, PCI) runs at 100
MHz. Low speed peripherals are connected to two APB buses.
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On board memories are 256 Mbyte of DDR2 400 SDRAM and 64 Mbit of SPI Serial Flash
PROM. The board provides plenty of data interfaces, most notably 2 10/100 Mbit Ethernet
interfaces, but also USB, CAN bus, PCI, SPI, 12C, UART.

Figure 2: GR-LEON4-ITX evaluation board.

3.1.2 FPGA co-processor with Leon board

The challenge facing embedded processing algorithm implementations in FPGA logic is that
procedural image processing code is very difficult to convert into VHDL or Verilog code for
implementation into pure logic. Essentially, each operation performed on data must be
converted into a logical operation or hard-wired arithmetic logic unit in sequence. This
makes even simple floating point vector algorithms very complex in logic implementation
and is the main reason that vector processing engines on accelerated graphics cards are
most commonly used for computer vision. To overcome this challenge, we make use of
High-Level Synthesis (HLS) methods that automate the conversion of procedural code into
logical constructs. The toolchain we use for this is the recently released Xilinx SDSoC
environment, an Eclipse-based software suite designed to write complete software systems,
then move specific algorithms into the Programmable Logic (PL) area of a hybrid
System-on-a-Chip (SoC) device with FPGA built in such as the Zyng-7000 series
processors, which combine an FPGA with a dual-core ARM Cortex-A9 hard microcontroller.
We currently use the AVNet MicroZed Z-7020 board for prototyping and testing algorithms
at present due to it’s small size, low cost, and accessibility for code development having
been in production for several years. This board is shown in Figure 1, and the specifications
are as follows:

o Arm Cortex-A9 @667MHz, 1GB SDRAM, 128Mb Flash, 100 I/O
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e Artix-7 FPGA (AXI bus), 74K logic cells, 53.2k LUTs, 3.3Mb RAM

Figure 3: MicroZed board with Zyng-7020

The Xilinx SDSoC environment is used to build boot images on SD card that contain a
first-stage bootloader, a Linux kernel, a complete Linux filesystem, ELF-format binaries that
implement the software side (un-accelerated) of the application, and a bitstream that
represents the hardware (accelerated through HLS) side of the application and is uploaded
to the PL automatically on boot-up. After the HLS process, the resulting logic design in a
Hardware Description Language (HDL) is synthesized, placed, routed, optimized, and
connected to the internal AXI bus for communication by the Vivado software suite. The Linux
kernel and filesystem are derived from Xilinx’ PetaLinux distribution, which can be easily
customized for use on SoC and FPGA based processors. This process is illustrated in Figure
2. The Xilinx reVISION stack of library functions specifically designed for the HLS process in
SDSoC is also used to expand the functions that can be moved to the FPGA. The reVISION
stack includes a small set of ported OpenCV functions through an API called xfOpenCV, and
a set of accelerated neural network implementation functions based on the Caffe framework.

Code Development Linux Kernel + Filesystem
System Profiling
L4

Optimizing Compiler i

[ J ELF ARM Binaries
g  Bootable System Image

Figure 4: Process for Creating System Image on SD Card
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3.1.3 RTEMS and BSP overview

RTEMS is a free open-source real-time operating system for embedded systems. It is the
typical choice for the LEON space processor and it has already been used in several ESA
missions.

RTEMS applications can be developed in C/C++ using different supported APIs: POSIX
10083.1b, ulTRON 3.0 and the so called classic RTEMS API (based on the RTEID/ORKID
standard). RTEMS does not provide any form of memory management or processes: in
POSIX terminology, it implements a single process, multi-threaded environment. RTEMS’
multitasking capabilities are based on priority-based, preemptive scheduling.

A complete SW toolset is available to allow the development of RTEMS C/C++ applications
for the LEONA4. In the following we briefly introduce the three main tools that are going to be
used in the frame of the InFuse project : RCC, GRMON and Mkprom.

RCC, which stands for RTEMS Cross Compiler, is an RTEMS LEON GNU cross compilation
system that brings together the following components:

GCC C/C++ compiler, version 4.4.6

GNU binary utilities

RTEMS real-time kernel with network support, version 4.10
BSP and drivers

Newlib standalone C-library

GDB cross-debugger for SPARC

GRMON is a debug monitor for the LEON processor, providing a non-intrusive debug
environment on the target hardware. It allows to perform all typical operations for running
and debugging an application on the target processor (e.g. read/write access to all LEON
registers and memory, downloading and execution of applications, built-in disassembler and
trace buffer management, breakpoint and watchpoint management, remote connection to
GDB). Typically GRMON will be connected to the LEON4 board using USB or Ethernet ports.

Mkprom is a utility used to create a boot image of an application, which can be stored into
the target’s flash PROM. Mkprom creates a compressed boot image that will load the
application into RAM, initialize various processor registers and finally start the application.
GRMON can be used to program the board’s flash PROM with the boot image generated by
Mkprom.

3.2 Porting CDFF components to RTEMS and FPGAs

3.2.1 Adaptations of DFNs to RTEMS

One of the main difficulties that we envisage in the porting of DFNs and DFPCs to the
LEON4 + RTEMS platform is represented by the large dependency of the InFuse SW on
third-party image and data processing libraries like OpenCV, PCL, OctoMap, etc. These
libraries do not support RTEMS, therefore their source code would have to be compiled in
the RTEMS/LEON environment after performing the required adaptations. Considering the
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size and complexity of these libraries, porting all of them to RTEMS/LEON is not to feasible
in the time frame of the InFuse project.

The proposed approach is to limit the porting effort to the OpenCV library, in particular to
OpenCV version 1.0. This older OpenCV library version is smaller and simpler than later
versions but provides many functions with which a few full DFNs can be built (for example
the Harris Feature Extraction). An InFuse DFPC will be identified that contains DFNs that can
be implemented using only OpenCV 1.0 function calls or, if this is not possible, that
minimizes the dependency on other libraries. Some DFNs that are considered for this porting
to LEON are the following:

e Harris Feature Extraction
e Stereo Depth Mapping based on Block Matching
e Image Resize and Filtering

The approach for addressing the case of a required library function that is missing in
OpenCV 1.0 will be to extract that function’s source code from later OpenCV version (or
from other libraries) and include it in the RTEMS/LEON program. The C++ parts that form the
DFPC controller and interface code will be taken as they are and, if issues arise with them in
the RTEMS/LEON environment, they will be modified appropriately.

The DFPC running on the LEON processor will use a TCP socket to receive input data (e.g.
stereo images) and to send output data (e.g. point cloud).

3.2.2 Adaptations of DFNs to FPGA

The process of high-level synthesis of C++ code to HDL is very limited in terms of
adaptability; many standard C++ functions and constructs cannot be converted to HDL due
to the underlying complexity required. Therefore, the DFNs ported to FPGA fabric are
selected by being either 1) composed of very simple and low-level C functions that are found
to be portable (e.g. those in math.h), or 2) part of the xfOpenCV API provided with Xilinx’
reVISION software stack that is designed for HLS use, detailed in [1].

Due to the limitations above, it is not feasible within the time frame of InFuse to port entire
DFNs and run them in FPGA fabric alone without the support of a microcontroller, mainly
due to the need to communicate between DFNs. The ARM AMBA AXI Protocol used to
communicate between FPGA components is not easily compatible with ASN.1 serialization
or generated interface functions, and communication with the DFPC manager and/or an
RCOS would require a complex interface to be developed for the FPGA. Instead, the
approach we will take is to build the core data fusion algorithms for selected DFNs into
discrete functions, move these core functions into FPGA logic with SDSoC while retaining
the DFPC controller and interface logic in C++, and compile the entire DFN with SDSoC.
Potentially entire DFPCs could be compiled this way as long as functions to be moved to
FPGA logic can be partitioned out from the rest of the DFN functionality.
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The Data Fusion Nodes that have been selected for full porting of core functionality based
on the above criteria are as follows:

e Harris Feature Extraction (implemented using xfOpenCV)
e Stereo Depth Mapping based on Block Matching (implemented using xfOpenCV)
e Image Resize and Filtering (implemented using xfOpenCV)

Additionally, experimental partial porting of some Data Fusion Nodes will be performed to
the extent that experimental use of HLS ultimately allows. DFNs that will be test-ported to
determine the extent of acceleration possible are as follows:

e Triangulation of features using basic math functions (partial support in HLS and
xfOpenCV)

e Feature Matching using basic logic operations (partial support in HLS and xfOpenCV)

e Essential Matrix estimation using RANSAC (previously tested on FPGA but not HLS)

Additional DFN functionality may be ported as the limitations of the current HLS
implementation are better established throughout this work, and particular attention will be
paid to the acceleration of functions with high processing load. At the moment, it is
assumed that all remaining DFNs will operate within the Zyng ARM microcontroller.

Porting custom developed software to RTEMS deployed on a space representative
hardware with an FPGA co-processing unit seems to be the path taken by the space
industry for upcoming/future space applications. While an RTEMS BSP is available for the
Zyng-7020 platform, accelerating functions using HLS from within RTEMS has never been
done and constitutes both a high risk of extending development time, and a highly beneficial
capability for future development of InFuse. In the interest of ultimately enabling a full
embedded link between RTEMS and an FPGA, experiments will be performed to compile
RTEMS binaries using SDSoC and moving core functions of DFNs into FPGA logic, in the
manner detailed below in section 3.2.2. If success is achieved in compiling and running
RTEMS within the time frame of InFuse, a proof-of-concept test of accelerating a simple
DFPC while running RTEMS on the Zyng will be conducted. Regardless of whether this test
will be conducted, some useful information on the feasibility of using HLS within RTEMS will
be obtained.

3.3 Integrated planetary track scenario EGSE

Mana and Minnie from LAAS-CNRS are the robots that will support these scenarios: they are
described in detail in the D5.2 EGSE description.

3.4 Planetary track multi-robot EGSE

As stated in section 2.4, no actual multi-robot scenario will be built, but functionalities
required by multi-robot scenarios will be demonstrated.
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The multi-robot EGSE is composed of the robots Mana and Minnie as they are deployed for
the integrated scenarios, and each of the three multi-robot functionalities will be manually
triggered by an operator, from the ground control computer.

Triggering this functions is made through requests sent to the DFPCs over the deployed Wifi
network. Regarding data exchanges between the two robots, two options are currently
considered:

e No direct communication between the robots is exploited. In this case the data to be
exchanged transfer through the ground station

e Direct communication between the robots is exploited. In this case the ground
control station only send the requests to the involved DFPCs.

At the time of writing this deliverable, the choice between these two options remains
pending.

For each of the considered multi-robot functionalities, the data to be exchanged are the
following:

e DEM fusion: a part of a DEM built by one robot is transferred to the other

e Direct inter-robot localisation: the relative position between the two robots is send by
the robot A, which applied the Point Cloud Model-Based Localisation DFPC to the
robot B, that has been localized by robot A, and both robots transmit their position
estimate to the other.

e Indirect inter-robot localisation: a part of a DEM built by robot A, or a sequence of
point clouds acquired by this robot, is transferred to the other robot B, which applies
the LIDAR Map-based Localisation DFPC. Subsequently, robots A and B exchange
their positions.
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4 Conclusion

This deliverable so far describes the 3 target EGSEs that are complementary to the EGSEs
which will be used for testing and validation of Orbital and Planetary RI of the CDFF. The
requirements for deploying a sub-set of DFPCs and DFNs from InFuse CDFF are described
for each target computational architecture (ARM/Leon4/FPGA) with the supporting operating
system (Linux/RTEMS). The deployment of DFNs on FPGAs for accelerating processing -
either entire DFN or a specific computationally expensive function within a DFN has been
illustrated. After doing a trade off on the availability of supporting libraries between the
Leon4 (RTEMS) and the ARM-FPGA coprocessing board, a set of DFNs that is likely to be
ported to both the Zync and Leon boards are listed. The multi-robot EGSE consists of the 2
rovers from LAAS that will deploy DFPCs for collaborative mapping (DEM fusion) and
localization (direct and indirect). The details of the rovers are well described in D5.2 and not
repeated in this deliverable to avoid duplication of content.
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