e as 2
spaceapp!:/.mpgqs! 4#7 Deutsches Zentrum '.: I magellium ?E"amﬁ LAAS-CNRS

DLR fur Luft- und Raumfahrt

O INFUSE

Deliverable Reference : D126

Title : Common Data Fusion Framework Final Package
Confidentiality Level : PU

Lead Partner : DEKI

Abstract : This document presents the software packages

of the Common Data Fusion Framework.

EC Grant N° : 730014
Project Officer EC : Christos Ampatzis (REA)

* X 3%
*
*

*
*
*

* 4k

InFuse is co-funded by the Horizon 2020
Framework Programme of the European Union



O INFUSE

D12.6 - Common Data Fusion Framework Final Package

Reference InFuse_DFKI_D12.6

Version
Date
Page

1.1
29/03/2019
1

DOCUMENT APPROVAL SHEET

Name Organization Date
Prepared and Alexander Fabisch DFKI 15/02/2019
cross-reviewed by: Raul Dominguez

Romain Michalec Strathclyde

Shashank Govindaraj SPACEAPPS

Irene Sanz

Andrea De Maio LAAS

Vincent Bissonnette MAG

Nassir Oumer

DLR




O INFUSE

D12.6 - Common Data Fusion Framework Final Package

Reference InFuse_DFKI_D12.6

Version : 1.1
Date : 29/03/2019
Page : 2

DOCUMENT CHANGE RECORD

Version | Date Author Changed Reason for Change / RID No
Sections or
Pages

0.1 08/01/2018 | Alexander Fabisch All Basic document template

0.2 30/01/2018 Romain Michalec All Add content and improve formatting

04/02/2018

0.3 11/02/2019 Shashank Govindaraj Section 4 Requests for inputs from specific
Section 5 partners

1.0 15/02/2019 Shashank Govindaraj All Final review

1.1 29/03/2019 Irene Sanz All Modifications to address RIDs and

update links




Reference InFuse_DFKI_D12.6

@ | " F |J 5 E \E/)zl:[seion 29/03/2011;

Page : 3

D12.6 - Common Data Fusion Framework Final Package

Executive Summary

This document describes the Common Data Fusion Framework (CDFF), that is to say the
main software product of the InFuse project. As explained in previous deliverables, the
framework is made up of three software components: CDFF-Core, CDFF-Support, and
CDFF-Dev. This deliverable describes the state of those three components, and where to
get them and their documentation.



Reference InFuse_DFKI_D12.6

@ | " F |J 5 E \E/)zl:[seion 29/03/2011.‘;1

Page

D12.6 - Common Data Fusion Framework Final Package

Table of Contents

1 Introduction
1.1 Purpose
1.2 Structure
1.3 Applicable documents
1.4 Reference documents
1.5 Acronyms
2 Public release
2.1 Files in the CDFF repository
2.2 Files in the CDFF_dev repository
3 Optional proprietary dependencies of the CDFF
3.1 EDRES
3.1.1 Additional features
3.1.2 Installation instructions
3.1.3 Conditions of use
3.2 DLRTracker-core
3.2.1 Additional features
3.2.2 Installation instructions
3.2.3 Conditions of use
4 DFNs
4.1 Integrated in the CDFF
4.2 In CDFF Development branch

5 DFPCs

14

15

15

15

15

16

16

16

16

16

17

17

19

20



Reference InFuse_DFKI_D12.6

@ | " F |J 5 E \E/)zl:[seion 29/03/2011%

Page

D12.6 - Common Data Fusion Framework Final Package

5.1 Integrated in the CDFF
5.2 In CDFF Development branch
5.3 In private repository
6 Support tools
6.1 Pose manager
6.2 Central data product manager
6.3 Orchestrator
6.4 ARM64/FPGA support
7 Development tools
7.1 DFN and DFPC code generators
7.2 Data log replay
7.3 Middleware facilitation
7.3.1 Rock
7.3.1.1 pocolog2msgpack
7.3.1.2 rock2infuse
7.3.1.3 ROS to ASN.1 and ASN.1 to ROS

8 Conclusion

20

21

22

23

23

23

23

23

25

25

25

25

25

25

25

26

27



Reference InFuse_DFKI_D12.6

@ | " F |J 5 E \E/)zl:[seion 29/03/2011;

Page : 6

D12.6 - Common Data Fusion Framework Final Package

1 Introduction

1.1 Purpose

This deliverable documents the Common Data Fusion Framework (CDFF), that is to say the
main software product of the InFuse project, written in C++ for the Core and Support
components, and in Python for the Dev component. It explains where the components are
downloadable from, where are their installation and usage instructions, how to get the
optional proprietary dependencies of the Core component, which DFNs and DFPCs are in
which branch, which support tools are available in the Support component, and which
development tools are available in the Dev component.

1.2 Structure

This document is structured as follows:

Section 1 Introduction

Section 2 Description of the public release

Section 3 Optional proprietary dependencies of the CDFF
Section 4 DFNs

Section 5 DFPCs

Section 6 Support tools

Section 7 Development tools

Section 8 Conclusion

1.3 Applicable documents

AD1 InFuse Grant Agreement
AD2  InFuse Consortium Agreement
AD3 InFuse internal management manual for project partners

1.4 Reference documents

RD1  Description of Action document

RD2 D4.2: Advanced CDFF Architecture and ICD
RD3 D9.2: Data products management software
RD4 D9.4: Middleware and facilitators software
RD5 D11.4: TRR Ready CDFF

1.5 Acronyms

DEM: Digital Elevation Map
DFN: Data Fusion Node
DFPC: Data Fusion Processing Compound



Reference InFuse_DFKI_D12.6

@ | " F |J 5 E \E/)(::[Seion 29/03/2011;

Page : 7

D12.6 - Common Data Fusion Framework Final Package

EGSE: Electrical Ground Support Equipment
RI: Reference Implementation



Reference InFuse_DFKI_D12.6

O INFUSE o

D12.6 - Common Data Fusion Framework Final Package

2 Public release

The "public release" of the CDFF is made up of all the CDFF-related source code that can
be made available to the community under an open-source license: the CDFF itself, and a
couple open-source dependencies hosted for convenience in the same code repository as
the CDFF, instead of in their own.

The expression "public release" stands in opposition to "SRC release", documented in the
next section, which only means that the public release has been complemented with a few
proprietary dependencies. There is no difference in the source code of the CDFF itself, or in
the couple co-hosted open-source dependencies. The difference is only in the availability of
those additional proprietary dependencies. See the next section for more information on the
optional proprietary dependencies.

CDFF code repository CDFF_dev code repository
Components CDFF-Core and CDFF-Support CDFF-Dev
License 2-clause BSD GPL v3 or later
Language C++, CMake, Shell Python
URL https://qitlab.com/h2020src/og3/cdff | https://gitlab.com/h2020src/og3/cdff d

ev

Documentation
and installation
instructions

Dependencies:
CDFF/External/README.md

CDFF:
CDFF/README.md#building-the-cdff-
core-and-support

Dependencies of CDFF-Dev:
CDFF_dev/README.md#dependencies
-of-cdff-dev

CDFF-Dev:
CDFF_dev/README.md#compiling-an
d-installing-cdff-dev

Installation of CDFF-Core/Support and
CDFF-Dev with Autoproj:
cdff-buildconf/README.md#infuse-fra
mework-install-instructions (branch:
cdff_dev)

Additional
documentation

How to write a DFN:
https://docs.google.com/document/d/

Software design of CDFF_Dev:
https://docs.google.com/document/d/1

1hFTRKgJNN3n brT3aajMAO3AR jQ2

yz w7Eut6Rtg0d416R4mze2G80ip4agy

eCo-ZM33gqaY5cE/edit?usp=sharing

arTDIKVgC6g/edit?usp=sharing

How to write a DFPC:
https://docs.google.com/document/d/
1ZUhZPnedd1mO42y-g4N7USItOnKe
ZzbyyZz yzpl smk/edit?usp=sharing



https://gitlab.com/h2020src/og3/cdff
https://gitlab.com/h2020src/og3/cdff_dev
https://gitlab.com/h2020src/og3/cdff_dev
https://gitlab.com/h2020src/og3/cdff/blob/master/External/README.md
https://gitlab.com/h2020src/og3/cdff/tree/master#building-the-cdff-core-and-support
https://gitlab.com/h2020src/og3/cdff/tree/master#building-the-cdff-core-and-support
https://gitlab.com/h2020src/og3/cdff_dev#dependencies-of-cdff-dev
https://gitlab.com/h2020src/og3/cdff_dev#dependencies-of-cdff-dev
https://gitlab.com/h2020src/og3/cdff_dev#compiling-and-installing-cdff-dev
https://gitlab.com/h2020src/og3/cdff_dev#compiling-and-installing-cdff-dev
https://gitlab.com/h2020src/og3/cdff-buildconf/tree/cdff_dev#infuse-framework-install-instructions
https://gitlab.com/h2020src/og3/cdff-buildconf/tree/cdff_dev#infuse-framework-install-instructions
https://docs.google.com/document/d/1hFTRKgJNN3n_brT3aajMA03AR_jQ2eCo-ZM33ggY5cE/edit?usp=sharing
https://docs.google.com/document/d/1hFTRKgJNN3n_brT3aajMA03AR_jQ2eCo-ZM33ggY5cE/edit?usp=sharing
https://docs.google.com/document/d/1hFTRKgJNN3n_brT3aajMA03AR_jQ2eCo-ZM33ggY5cE/edit?usp=sharing
https://docs.google.com/document/d/1ZUhZPnedd1mO42y-q4N7USltOnKeZzbyyZz_yzpLsmk/edit?usp=sharing
https://docs.google.com/document/d/1ZUhZPnedd1mO42y-q4N7USltOnKeZzbyyZz_yzpLsmk/edit?usp=sharing
https://docs.google.com/document/d/1ZUhZPnedd1mO42y-q4N7USltOnKeZzbyyZz_yzpLsmk/edit?usp=sharing
https://docs.google.com/document/d/1yz_w7Eut6Rtg0d4I6R4mze2G8Oip4agyqrTDlKVgC6g/edit?usp=sharing
https://docs.google.com/document/d/1yz_w7Eut6Rtg0d4I6R4mze2G8Oip4agyqrTDlKVgC6g/edit?usp=sharing
https://docs.google.com/document/d/1yz_w7Eut6Rtg0d4I6R4mze2G8Oip4agyqrTDlKVgC6g/edit?usp=sharing

Reference InFuse_DFKI_D12.6

@ | " F |J 5 E \E/)zl:[seion 29/03/2011;

Page : 9

D12.6 - Common Data Fusion Framework Final Package

Software design of CDFF-Support:

https://docs.google.com/document/d/
1BzKnNrRw6yIFIIrMTIEGZXD8awtsmvN
slgRuB4j29mw/edit#heading=h.8wiled

c8qgcdc

In addition to the CDFF itself, we are also releasing a Docker image that contains an Ubuntu
16.04 LTS distribution and all the open-source dependencies of CDFF-Core,
CDFF-Support, and CDFF-Deyv, in the versions that we have used for development and
testing. This image therefore makes up a reference, containerized environment for the
CDFF, where one can build CDFF-Core/CDFF-Support and test it, or use the development
tools provided by CDFF-Deuv. It is called h2020infuse/cdff and is available publicly in
the Docker Hub registry: https://hub.docker.com/u/h2020infuse.

We have also written extensive documentation about what Docker is, why and how to use
it, how to startup containers from the InFuse Docker image, and how to mount local clones
of the CDFF and CDFF-Dev repositories inside those containers. This documentation is
available at the following address:

https://drive.google.com/open?id=1aW3 giavOZdvOIJEEfun4dW0Cg2tiInDvb8S3y2bysjpw.

2.1 Files in the CDFF repository

Files in the CDFF repository are organized in a rather straightforward and self-explanatory
manner. The following tree structure documents what each subdirectory is for. The CMake
files of the build system are omitted for clarity.

External/

installers/
patches/

get-cdff-dependencies.sh


https://docs.google.com/document/d/1BzKnNrRw6yIFllrITiEGZXD8awtsmvNslqRuB4j29mw/edit#heading=h.8wiledc8qcdc
https://docs.google.com/document/d/1BzKnNrRw6yIFllrITiEGZXD8awtsmvNslqRuB4j29mw/edit#heading=h.8wiledc8qcdc
https://docs.google.com/document/d/1BzKnNrRw6yIFllrITiEGZXD8awtsmvNslqRuB4j29mw/edit#heading=h.8wiledc8qcdc
https://docs.google.com/document/d/1BzKnNrRw6yIFllrITiEGZXD8awtsmvNslqRuB4j29mw/edit#heading=h.8wiledc8qcdc
https://hub.docker.com/u/h2020infuse
https://drive.google.com/open?id=1aW3_giavOZdvOljEEfun4W0Cq2tlnDvb8S3y2bysjpw

Reference InFuse_DFKI_D12.6

O INFUSE "

Page

D12.6 - Common Data Fusion Framework Final Package

README . md

# Documentation about the dependencies of the CDFF and how to install them
.gitignore

# Contains the patterns: /sources/, /install/, /packages/

Common/
# Software components used by all or some of the DFNs and DFPCs
Types/
# Data types used throughout the CDFF
ASN.1/

ESROCOS/

# ASN.1 data types adapted from (an early 2018 version of)

# ESROCOS
Frame.asn
Pointcloud.asn
Sonar.asn

InFuse/

# ASN.1 data types written by us
VisualPointFeatureVector2D.asn
CorrespondenceMap2D.asn

c/
# C data types transcompiled from their ASN.1 definition

Frame.{h,c} # generated from ASN.1

Pointcloud.{h,c} # generated from ASN.1

Sonar.{h,c} # generated from ASN.1

CPP/
# C++ wrappers encapsulating some of the C data types in C++ classes,
# for convenience
Frame. {hpp,cpp}
Pointcloud. {hpp, cpp}
README . md
# Instructions on how to transcompile the ASN.1 types to C, or how to
# download transcompiled types from the continuous integration server
.gitignore
# Contains the pattern: /C/
Converters/
# Converters between ASN.1 types and library types, that is to say types
used

# inside a DFN, such as cv::Mat or pcl::Pointcloud
FrameToMatConverter. {hpp,cpp}
MatToFrameConverter. {hpp, cpp}

Errors/

# Assertion macros

Helpers/

# Handlers for configuration file parsing



Reference InFuse_DFKI_D12.6

@ INFUSE o

D12.6 - Common Data Fusion Framework Final Package

DFNs/
# Each

DFPCs/

Loggers/
# Handlers for warning and error messages
Visualizers/
# OpenCV and PCL based GUI viewers, for debugging and profiling purposes
Core/
# Most libraries that provide core functionalities for the various DFNs
# of the CDFF (e.g. OpenCV, PCL..) are handled as external dependencies,
# see the External/ directory. However some of those core libraries are
# hosted here, especially when they don't have their own code repository.
# They are all appropriately documented.

README .md

liborbslam

DFN is a set of .hpp/.cpp files in a adequately named directory:

DepthFiltering/

DisparityImage/

FeatureExtraction2D/

# Illustration of the structure of a DFN:
FeatureExtraction2D_desc.yaml
# YAML description of the FeatureExtraction2D DFN
FeatureExtraction2DInterface. {hpp,cpp}
# Interface and implementation of the DFN Interface
# of the FeatureExtraction2D DFN
HarrisDetector2D. {hpp,cpp}
# Interface and implementation of the Harris-based DFN Implementation
# of the FeatureExtraction2D DFN
OrbDetectorDescriptor.{hpp,cpp}
# Interface and implementation of the ORB-based DFN Implementation
# of the FeatureExtraction2D DFN

FeatureExtraction3D/

FeatureDescription2D/

FeatureDescription3D/

FeatureMatching2D/

FeatureMatching3D/

ImageFiltering/

ImageRectification/

LidarBasedTracking/

PrimitiveFinder/

StereoRectification/

StereoSlam/

DFNCommonInterface.hpp
# This file is the DFNCI: the parent class of all DFNs and therefore the
# grandparent class of all DFN Implementations



Reference InFuse_DFKI_D12.6

O INFUSE "

Page

D12.6 - Common Data Fusion Framework Final Package

# As with DFNs, each DFPC is a set of .hpp/.cpp files in a adequately named
directory:

Absolutelocalization/

HapticScanning/

LIDARPoseGraphSlam/

ModelBasedTracker/

Reconstruction3D/

VisualSlamStereo/

DFPCCommonInterface.hpp
# This file is the DFPCCI: the parent class of all DFPCs and therefore the
# grandparent class of all DFPC Implementations

Documentation/
# Directory where the Doxygen documentation can be generated

Support/
# Two components of CDFF-Support (the third one, the DFPCs, have their own
directory):

CentralDPM/

# The central data product manager

Orchestrator/

# The orchestrator (WIP)

Tests/

# Various test executables of the CDFF. They are not, per se, a part of the CDFF.
They

# are built if the CMake option BUILD_TESTS is given at project configuration.

UnitTests/
# Unit tests of the CDFF. They are run by the continuous integration server
# to ensure self-consistency and successful builds.
Common/
# Unit tests of the common libraries
DFNs/
# Unit tests of the DFNs
DFPCs/
# Unit tests of the DFPCs
Support/
# Unit tests of the CDFF-Support components
# (except the DFPCs which have their own directory)
Catch/
# The Catch library, a library for unit testing
README . md
# How to write unit tests using the Catch library
GuiTests/
# Tests that display output using the OpenCV and PCL based viewers in
Common/
PerformanceTests/
KeyPerformanceMeasuresTests/



Reference InFuse_DFKI_D12.6

O INFUSE "

Page

D12.6 - Common Data Fusion Framework Final Package

# Tests that output quantitative performance measures
ConfigurationFiles/

# Configuration files for the DFNs and the DFPCs used in the tests
Data/

# Sample data on which the tests run

Tools/
# Tools for building, testing, debugging.. Each tool in this directory is an
# independent helper application. If a tool consists of C++ code meant to be built
# with the rest of the project, it's more likely a part of the CDFF, and therefore
# meant to be elsewhere, Common/ perhaps.
ASN.1/
# The ASN.1 transcompiler that we are using is ESA's/ESROCOS's ASN1SCC, an
# ASN.1 to C and ADA transcompiler which targets safety-critical embedded
# systems and has been used in the TASTE project. More compilers in this

list.

# This directory contains scripts for transcompiling the ASN.1 types to C
with

# a downloaded-on-the-fly ASN1SCC compiler, and for downloading
transcompiled

# ASN.1 types from the continuous integration server

CMake/

# Uninstallation scripts for the CDFF. They enable "make uninstall" and

# "make rm" commands.

CPPCheck/

# A static code analyzer used during continuous integration testing
Valgrind/

# A memory leak detection tool used during continuous integration testing
Docker/

# Dockerfiles to build the containerized environments in which the
continuous

# integration server, or a user, can build and test the CDFF. These Docker
# environment contain an Ubuntu 16.04 LTS distribution completed with the
# dependencies of the CDFF built from source and installed in /usr/local.

README .md

INSTALL .md
CONTRIBUTING.md
LICENSE .md
AUTHORS. txt

# Self-explanatory

.gitlab-ci.yml

# Configuration file for the continuous integration server. It defines the
pipelines

# that the server runs.

.gitignore


https://github.com/ttsiodras/asn1scc
https://en.wikipedia.org/wiki/Comparison_of_ASN.1_tools
https://en.wikipedia.org/wiki/Comparison_of_ASN.1_tools

Reference InFuse_DFKI_D12.6

O INFUSE o

Page

D12.6 - Common Data Fusion Framework Final Package

# Contains the patterns: *~, cmake_uninstall.cmake, cmake_purge.cmake, /build/

2.2 Files in the CDFF_dev repository

The following tree structure documents what each subdirectory in the CDFF_dev repository
is for:

bin/
# Executables, mostly command line tools for code generation and log data handling
cdff_dev/
# Python library of CDFF-Dev
dfpcs/
# Python bindings of DFPCs
dfns/
# Python bindings of DFNs
extensions/
# Bindings for other code that is not a DFN or DFPC
templates/
# Jinja2 templates for code generators
test/
# Unit tests
*.py
# Core Python modules of CDFF-Dev
cpp_helpers/
# C/C++ helpers that will be used by the Python library

doc/

# Anything that is related to the documentation of CDFF-Dev
examples/

# Example scripts that demonstrate how CDFF-Dev can be used
test/

# Integration tests that combine two or more modules of CDFF-Dev
README .md

# Most important information about CDFF-Dev

requirements.txt

# Python dependencies of CDFF-Dev

setup.py
# Python setup script for CDFF-Dev



Reference InFuse_DFKI_D12.6

r\\ Version : 1.1
O/ | " F ” 5 E Date : 29/03/2019
~—/ Page : 15

D12.6 - Common Data Fusion Framework Final Package

3 Optional proprietary dependencies of the CDFF

The CDFF itself does not contain any proprietary software, but a few of its software
modules depend on proprietary libraries. Those modules are disabled by default, that is to
say they will normally not be compiled. They can be enabled by anyone who has the
proprietary libraries (and a license to use them).

The expression "SRC release", as opposed to "public release", means that in addition to the
regular, public release, all or some of the proprietary dependencies are available to the user.
It is important to note that "SRC release" does not mean a different CDFF, and so it is not a
release at all, and the expression is a bit unfortunate: it is the same source code, released
on the same website. The difference is only in the availability of the proprietary
dependencies.

3.1 EDRES

EDRES is a proprietary robotics library developed and owned by the Centre National
d’Etudes Spatiales in France (CNES). It provides a wide range of functionalities centered
around perception for planetary robotics, such as accurate and robust stereo correlation,
navigation map building and path planning.

3.1.1 Additional features

As agreed among partners, most of the functionalities provided by the EDRES components
of the CDFF are also present in the open-source release. The functions provided by EDRES
are, however, considered to be more accurate, faster or less resource intensive, depending
on the case. One exception to this open-source/proprietary function duality is the navigation
map building functionality, which is only provided with the EDRES library, as it was an extra
functionality useful for representative test campaigns, but not within the scope of InFuse.

3.1.2 Installation instructions

To obtain the EDRES library, the interested user must formally request it by contacting the
coordinator of the InFuse consortium, or Magellium, the partner responsible for EDRES
functionalities. Contacts: thierry.germa@magellium.fr or vincent.bissonnette@magellium.fr.

A software archive containing the EDRES library in binary form, its header files, and a
support file for CMake, will be sent to the user. Installation can be performed with the
CDFF-provided command:

External/get-cdff-dependencies.sh -d edres-wrapper

See the documentation in External/installers/edres-wrapper.sh to know where
to put the software archive you got from Magellium before executing this command, and
see the usage message from External/get-cdff-dependencies.sh --help for
information on the available options, such as the installation prefix.


mailto:thierry.germa@magellium.fr
mailto:vincent.bissonnette@magellium.fr

Reference InFuse_DFKI_D12.6

O INFUSE T

Page

D12.6 - Common Data Fusion Framework Final Package

After the library is installed, the CDFF can be built (or rebuilt) with EDRES-dependent DFNs
by setting the following CMake cache entry (for instance with a -D option on the command
line): HAVE_EDRES=0N.

3.1.3 Conditions of use

The complete terms of use of the EDRES library will be provided with it to every user of the
EDRES library.

3.2 DLRTracker-core

DLRTracker-core is a proprietary C++ library that provides functions to support visual
tracking. It is developed by the Institute of Robotics and Mechatronics at DLR and targets
embedded space systems.

3.2.1 Additional features

The following functionalities provided by the DLRTracker-core library have also been
implemented as open-source DFNs for the public release of the CDFF: Kalman filtering,
edge detection, and image gradient computation.

3.2.2 Installation instructions

To obtain the DLRTracker-core library, the interested user must formally request it to DLR's
Institute of Robotics and Mechatronics, Department of Perception and Cognition.

A software archive containing the DLRTracker-core library in binary form, its header files,
and a support file for CMake, will be sent to the user. Installation can be performed with the
CDFF-provided command:

External/get-cdff-dependencies.sh -d dlrtracker-core

See the documentation in External/installers/dlrtracker-core.sh to know
where to put the software archive you got from DLR before executing this command, and
see the usage message from External/get-cdff-dependencies.sh --help for
information on the available options, such as the installation prefix.

After the library is installed, run CMake in your build tree to have it detect the availability of
the library and built (or rebuilt) the CDFF with DLRTracker-dependent DFNs.

3.2.3 Conditions of use

The DLRTracker-core library is proprietary software which can be used by DLR partners for
non-commercial purposes within the framework of the PERASPERA strategic research
cluster (SRC).



Reference InFuse_DFKI_D12.6

O INFUSE E e

Page

D12.6 - Common Data Fusion Framework Final Package

4 DFNs
4.1 Integrated in the CDFF

Previous deliverables have featured the list of the DFNs we aimed for. Here we list the DFNs
that effectively exist in the master branch of the CDFF repository at public release time, in
the DFNs/ directory. Every DFN features a description file in YAML format, as planned in

D4.2.

DFN Description Track
BundleAdjustment Determines the poses of a camera from the images OT and PT
taken at those poses
CamerasTransform Estimates the geometric transformation between two OT and PT
Estimation cameras based on pairs of 2D matching keypoints
found in two images that the cameras captured
ColorConversion DFN that convert an image from a colorspace to -
another (i.e. RGB to Grayscale or HSV to BGR)
DepthFiltering DFN that filters a 2D depth image -
Disparitylmage Creates a disparity image from an image pair PT
DisparityToPointCloud Creates a point cloud from a disparity image OT and PT
DisparityToPointCloud Creates a point cloud with intensities from a disparity OT and PT
WithIntensity image and a grayscale image
FeaturesDescription2D Computes descriptors for 2D keypoints OT and PT
FeaturesDescription3D Computes descriptors for 3D keypoints OT and PT
FeaturesExtraction2D Extracts 2D keypoints from a 2D image OT and PT
FeaturesExtraction3D Extracts 3D keypoints from a 3D pointcloud OT and PT
FeaturesMatching2D Matches 2D keypoints OT and PT
FeaturesMatching3D Matches 3D keypoints OT and PT
ForceMeshGenerator Creates a point cloud using the feedback from a force OT and PT
sensor
FundamentalMatrix Estimates the fundamental matrix of a camera pair OT and PT
Computation based on pairs
ImageDegradation DFN that degrades the resolution of an image PT




Reference InFuse_DFKI_D12.6

O INFUSE oo

1.1

29/03/2019
Page 18
D12.6 - Common Data Fusion Framework Final Package
ImageFiltering Applies an image processing filter to a 2D image OT and PT
ImageRectification DFN that rectifies an image -
KFCorrection Corrects or updates states with a given measurement OT and PT
in Kalman filtering
KFPrediction Predicts current states given the last states in Kalman OT and PT
filtering
LidarBasedTracking DFN that tracks a model in a point cloud OT and PT
ModelBasedDetection DFN that performs Linemod detection for object pose OT and PT
detection
PerspectiveNPoint Solves the Perspective-n-Point problem: estimates OT and PT
Solving camera pose from 3D points and corresponding 2D
points.
PointCloudAssembly DFN that combines two point clouds together OT and PT
PointCloudFiltering DFN that applies a filter on a point cloud OT and PT
PointCloudReconstruction | Turns pairs of 2D matching keypoints into a OT and PT
2DTo3D reconstructed 3D pointcloud of keypoints
PointCloudTransformation | Transforms a point cloud OT and PT
PoseEstimator Estimates the pose of a robot given the primitives OT and PT
found in the image
PoseWeighting Estimates the pose of a joint given different predictions | OT and PT
PrimitiveFinder Finds primitives in a 2D image OT and PT
PrimitiveMatching DFN that finds primitives in a 2D image -
Registration3D Registers a source point cloud on a sink point cloud OT and PT
StereoDegradation DFN that degrades the resolution of an image PT
StereoMotionEstimation DFN that computes an estimated motion between two | OT and PT
stereo acquisitions
StereoReconstruction Turns a pair of stereo images into a reconstructed 3D OT and PT
scene (in the form of a 3D pointcloud)
StereoRectification DFN that rectifies an stereo pair PT and OT
StereoSlam DFN that performs visual SLAM on a stereo image pair | PT

input. As this is a relative localisation technique, if
tracking is successful, the pose output is expressed in




Reference

O INFUSE oo

InFuse_DFKI_D12.6
1.1

29/03/2019
Page 19
D12.6 - Common Data Fusion Framework Final Package
the reference frame of the first image passed to the
tracker.
Transform3DEstimation Estimates the geometric transformation between two OT and PT
sets of matched 3d points
Voxelization Voxelizes a 2D depth map OT and PT

4.2 In a development branch of the CDFF repository

The following DFNs are works in progress and in other branches than master:

DFN Description

Current location

OutlierDetection Outlier detection node that uses machine learning
https://qitlab.com/h2020src/og3/cdff/merge reques

ts/164

branch:
outlier_detection



https://gitlab.com/h2020src/og3/cdff/merge_requests/164
https://gitlab.com/h2020src/og3/cdff/merge_requests/164

Reference InFuse_DFKI_D12.6

O INFUSE o

D12.6 - Common Data Fusion Framework Final Package

5 DFPCs
5.1 Integrated in the CDFF

Previous deliverables have featured the list of the DFPCs we aimed for. Here we list the
DFPCs that effectively exist in the master branch of the CDFF repository at public release
time, in the DFPCs/ directory. Every DFPC features a description file in YAML format, as

planned in D4.2.

DFPC Description Track
Model-Based Tracking of an object in 6 degrees of freedom given an image oT
Visual Tracking (or stereo images) and the object's 3D model. A wrapper
around the DLRtracker_core library.
Haptic Scanning Reconstruction of the environment using a force sensor as OT and PT
input
Model-Based Tracking of the pose of a robot in a scene given its physical OT and PT
Tracking description
Model-Based DFPC that estimates the position of a given 3D point cloud (the | OT and PT
Point-Cloud model) in a larger 3D point cloud (the scene)
Localization
Reconstruction DFPC that builds a 3D point cloud model of a target from OT and PT
3D multiple stereo image pairs of it
Reconstruction DFPC that builds a 3D point cloud scene from multiple stereo OT and PT
And Identification [ image pairs, and estimates the position of a given point cloud in
the larger point cloud
Visual Stereo Simultaneous localization and mapping based on stereo PT
SLAM images. A wrapper around the StereoSlam DFN.
Map-Based Visual | Localization in a previously built SLAM map. This DFPC was PT
Localization not implemented as a separate DFPC: instead it is an alternate
operating mode of the Visual Stereo SLAM DFPC.

The following DFPCs have been implemented as DFNs instead, and those DFNs are in the
master branch of the CDFF repository, in the DFNs/ directory:

DFPC - DFN

Description

Track

Visual Odometry
MAG

Visual odometry based on wheel odometry and stereo images
and developed by Magellium

PT




Reference InFuse_DFKI_D12.6

O INFUSE o

Page

D12.6 - Common Data Fusion Framework Final Package

Magellium's version of the Visual Odometry DFPC has been implemented as a single DFN instead,
the StereoMotionEstimation DFN. This DFN depends on EDRES, a proprietary library by CNES. An
open-source version of the Visual Odometry DFPC has been developed by LAAS, see Visual
Odometry LAAS in the tables of this section.

Model-Based DFPC that perform relative localisation wrt a known model oT
Point-Cloud described by its point cloud.
Tracking

This DFPC has been implemented as a DFN instead, the LidarBasedTracking DFN.

Mid/Close-Range | DFPC which detects a known object in stereo images from a oT
Model-based pre-trained template and estimates a coarse relative pose.
Detection

This DFPC has been implemented as a DFN instead, the ModelBasedDetection DFN.

5.2 In a development branch of the CDFF repository

The following DFPCs are works in progress and are located in various development
branches instead of the CDFF's master branch.

DFPC Description Track

DEM Building Digital elevation mapping based on an input pointcloud (lidar-captured | PT
or reconstructed from stereo images) and the estimated pose of the
rover

This DFPC is in the LAAS_DFPCs branch: https://gitlab.com/h2020src/og3/cdff/tree/LAAS DEPCs

Visual Visual odometry based on wheel odometry and stereo images and PT
Odometry LAAS | developed by LAAS

This DFPC is in the LAAS_DFPCs branch: https://qitlab.com/h2020src/og3/cdff/tree/LAAS DFPCs

Navigation Map | Creation of navigation maps from dense DEM input. PT
Building

This DFPC has been implemented as a DFN instead, the DEMToNavMap DFN. This DFN depends
on EDRES, a proprietary library by CNES. Because it doesn't have an open-source
implementation, it has not been merged into the master branch. It can be found in the
feature/yarp_middleware_support branch:

https://qgitlab.com/h2020src/og3/cdff/tree/feature/yarp middleware support/DFNs

Mid/Close-Ran | DFPC which performs relative localisation wrt to a known target PT
ge specified by its CAD model using stereo images. oT
Model-based

Tracking



https://gitlab.com/h2020src/og3/cdff/tree/LAAS_DFPCs
https://gitlab.com/h2020src/og3/cdff/tree/LAAS_DFPCs
https://gitlab.com/h2020src/og3/cdff/tree/feature/yarp_middleware_support/DFNs

@ | " F |J 5 E \E/)zl:[seion 29/03/2019

Reference InFuse_DFKI_D12.6

Page

D12.6 - Common Data Fusion Framework Final Package

1.1

22

This DFPC has been implemented as a DFN instead, the StereoModelBasedTracker DFN. This
DFN can be found in the feature/model_based_tracking branch:

https://qgitlab.com/h2020src/og3/cdff/tree/feature/model based tracking
A merge request has been issued and a first code review has been done.

Pose Fusion
[aka POM]

Integrate data corresponding to past poses, and produce updated past
poses after application of a pose fusion process.

PT

https://gitlab.com/h2020src/o0g3/cdff/tree/LAAS add POMCore

5.3 In a private repository

The following DFPCs are works in progress and are located outside the CDFF repository, in

partners’ servers.

DFPC Description Track
LIDAR Simultaneously builds an environment model composed of a series of PT
Pose-Graph LIDAR point clouds, and provides pose estimates for the rover

Slam

Absolute Absolute localization for a rover using orbital images, point clouds and | PT
Localization orthophotos



https://gitlab.com/h2020src/og3/cdff/tree/feature/model_based_tracking
https://gitlab.com/h2020src/og3/cdff/tree/LAAS_add_POMCore

Reference InFuse_DFKI_D12.6

O INFUSE o

Page

D12.6 - Common Data Fusion Framework Final Package

6 Support tools

6.1 Pose manager

The pose manager (POM) estimates the current pose of the robotic system from poses
obtained from several sources.

It is in the branch LAAS_add_POMCore of the CDFF repository.

https://gitlab.com/h2020src/og3/cdff/tree/LAAS add POMCore

6.2 Central data product manager

The central data product manager (Central DPM) allows certain data types to be stored
permanently on mass storage for later retrieval.

It is in the master branch of the CDFF repository, in the Support/CentralDPM directory.

6.3 Orchestrator

The orchestrator software maps the Autonomy Framework request to corresponding DFPCs
and OG4 sensors operation mode (based on types of sensors). An orchestrator
configuration file and sensor operation modes configuration are required for the specific
system before deployment. The Orchestrator has to be extended with RCOS specific
adapters to control the lifecycle of DFPCs based on OG2 requests and corresponding 0G4
operation modes.

It is in the branch feature/orchestrator of the CDFF repository.

https://gitlab.com/h2020src/o0g3/cdff/tree/feature/orchestrator

6.4 ARM64/FPGA support

The branch x1nx of the CDFF repository contains the necessary instructions and the
necessary configuration file (CMake toolchain file) to cross-compile a selected part of the
CDFF - the 2D feature extraction DFN and the libraries in the Common/ directory that this
DFN requires - to the ARM64 microprocessor architecture (aarch64). It targets the Xilinx
Zynq UltraScale+ ARM®64/FPGA multiprocessor system-on-a-chip embedded system,
reported on in detail in deliverables D10.3, D10.6, and D10.9.

This branch also contains the necessary instructions and the necessary configuration files
(CMake toolchain file and Boost.Build project-config jamfile) to cross-compile to ARM64 all
the necessary dependencies of this selected part of the CDFF.


https://gitlab.com/h2020src/og3/cdff/tree/LAAS_add_POMCore
https://gitlab.com/h2020src/og3/cdff/tree/feature/orchestrator

Reference InFuse_DFKI_D12.6

/f-.\\ Version : 1.1
O} | " F ” 5 E Date : 29/03/2019
~—/ Page : 24

D12.6 - Common Data Fusion Framework Final Package

Note that in order to proceed with cross-compilation, the user must provide an ARM64
sysroot and an ARM64 toolchain. We used those found in Xilinx's ReVISION software stack
and in Xilinx's SDK, respectively.

Because the master branch targets the x86_64 architecture of regular desktop computers
and the x1nx branch targets the ARM64 architecture of the Xilinx EGSE, the x1nx branch is
not meant to be merged into the master branch.

https://gitlab.com/h2020src/o0g3/cdff/tree/xInx



https://gitlab.com/h2020src/og3/cdff/tree/xlnx

Reference InFuse_DFKI_D12.6

O INFUSE o

Page

D12.6 - Common Data Fusion Framework Final Package

7 Development tools
7.1 DFN and DFPC code generators

The DFN code generator uses the description file of a DFN to write out C++ code for the
interface of that DFN, and the corresponding Python bindings.

https://gitlab.com/h2020src/0g3/cdff dev/blob/master/bin/dfn_template generator

The DFPC code generator does the same thing with a DFPC.

https://gitlab.com/h2020src/og3/cdff dev/blob/master/bin/dfpc _template generator

7.2 Data log replay

This software component replays log files to test data fusion solutions and visualize sensor
data and fused data. It is made up of:

e DataFlowControl

https://qgitlab.com/h2020src/og3/cdff dev/blob/master/cdff dev/dataflowcontrol.py
e Log iterators

https://qgitlab.com/h2020src/og3/cdff dev/blob/master/cdff dev/logloader.py
e Replay

https://qgitlab.com/h2020src/o0g3/cdff dev/blob/master/cdff dev/replay.py

7.3 Middleware facilitation
7.3.1 Rock
7.3.1.1 pocolog2msgpack

Lodfile converter from Rock's pocolog format (github.com/rock-core/tools-pocolog) to
MessagePack (github.com/rock-core/tools-pocolog). An additional tool is used to convert
types to the corresponding ASN.1 data types.

Location: https://qithub.com/rock-core/tools-pocolog2msgpack

7.3.1.2 rock2infuse

Converter to turn rock types stored in msgpack format into the CDFF's ASN.1 types in
msgpack format which is the format that CDFF_Dev uses.

Location: https://qgithub.com/rock-core/tools-pocolog2msgpack



https://gitlab.com/h2020src/og3/cdff_dev/blob/master/bin/dfn_template_generator
https://gitlab.com/h2020src/og3/cdff_dev/blob/master/bin/dfpc_template_generator
https://gitlab.com/h2020src/og3/cdff_dev/blob/master/cdff_dev/dataflowcontrol.py
https://gitlab.com/h2020src/og3/cdff_dev/blob/master/cdff_dev/logloader.py
https://gitlab.com/h2020src/og3/cdff_dev/blob/master/cdff_dev/replay.py
https://github.com/rock-core/tools-pocolog
https://github.com/rock-core/tools-pocolog
https://github.com/rock-core/tools-pocolog2msgpack
https://github.com/rock-core/tools-pocolog2msgpack

Reference InFuse_DFKI_D12.6

O INFUSE o

D12.6 - Common Data Fusion Framework Final Package

7.3.1.3 ROS to ASN.1 and ASN.1 to ROS

Support for conversion of a set of standard ROS messages to ASN.1 types, and vice versa.
Some of the ROS types are specific to robot systems that were used for data collection
during internal tests.

Location: https://qitlab.com/h2020src/og3/cdff ros



https://gitlab.com/h2020src/og3/cdff_ros

Reference InFuse_DFKI_D12.6

@ | " F |J 5 E \E/)zl:[seion 29/03/2011;

Page : 27

D12.6 - Common Data Fusion Framework Final Package

8 Conclusion

The state of the CDFF at public release time is in adequation with what can be expected
from a team of researchers - who are not formally-trained software engineers but
professional research experts - developing a large-scale, highly complex, state-of-the-art
software product in a very limited time - slightly longer than a year for the actual
implementation activities, plus a few months of architectural design. Some of the modules
that we intended to develop require adaptations and improvements for completeness. A
small subset of the Core and Support software are in development branches where they
undergo corrections and polishing before they are deemed ready to be integrated into the
main branch. However they have been implemented and tested, but require final reviews
before being merged to the master branch.

Nonetheless, a lot of work has been done and has resulted in a unique sensor data fusion
framework, which thanks to its modularity, its wide scope, and its common interfaces, will
hopefully be helpful to the partners involved in the next round of SRC projects and to the
robotics community at large. Thanks to the choice of open-source for both the CDFF and
most of its dependencies, development and maintenance can continue openly on the
internet, hopefully with the help of all interested parties worldwide.

Speaking of open-source, for the sake of the partners involved in the next OGs, it is
important to stress again that the internal release of the CDFF for follow-up projects does
not differ from the open-source release. It is the same source code in both cases. The
difference comes from the availability, for the partners in the next round of OGs, of two
proprietary dependencies which make it possible to compile a few DFN implementations
and DFPC implementations that users of the open-source release cannot compile.



